36,320 research outputs found

    Upper Bounds for the Critical Car Densities in Traffic Flow Problems

    Full text link
    In most models of traffic flow, the car density pp is the only free parameter in determining the average car velocity ⟨v⟩\langle v \rangle. The critical car density pcp_c, which is defined to be the car density separating the jamming phase (with ⟨v⟩=0\langle v \rangle = 0) and the moving phase (with ⟨v⟩>0\langle v \rangle > 0), is an important physical quantity to investigate. By means of simple statistical argument, we show that pc<1p_c < 1 for the Biham-Middleton-Levine model of traffic flow in two or higher spatial dimensions. In particular, we show that pc≤11/12p_{c} \leq 11/12 in 2 dimension and pc≤1−(D−12D)Dp_{c} \leq 1 - \left( \frac{D-1}{2D} \right)^D in DD (D>2D > 2) dimensions.Comment: REVTEX 3.0, 5 pages with 1 figure appended at the back, Minor revision, to be published in the Sept issue of J.Phys.Soc.Japa

    Mathematical characterization of mechanical behavior of porous frictional granular media

    Get PDF
    A new definition of loading and unloading along the yield surface of Roscoe and Burland is introduced. This is achieved by noting that the strain-hardening parameter in the plastic potential function is deduced from the yield locus equation of Roscoe and Burland. The analytical results are compared with the experimental results for plate-bearing and cone-penetrometer problems and close agreements are demonstrated. The wheel-soil interaction is studied under dynamic loading. The rate-dependent plasticity or viscoelastoplastic behavior is considered. This is accomplished by the internal (hidden) variables associated with time-dependent viscous properties directly superimposed with inelastic behavior governed by the yield criteria of Roscoe and Burland. Effects of inertia and energy dissipation are properly accounted for. Example problems are presented

    Erratum: Dynamics and scaling in a quantum spin chain material with bond randomness

    Full text link
    Follow-up neutron measurements, performed on a sample much larger than the one used in the original study, show that in the energy range 0.5-45 meV the magnetic excitations in BaCu2SiGeO7 are indistinguishable from those in conventional (disorder-free) quantum S=1/2 chains. Scrutinizing the previous data, we found that the analysis was affected by a poorly identified structured background and an additional technical mistake in the data reduction.Comment: This is a complete withdrawal of the original paper, also published as in Phys. Rev. Lett 93, 077206 (2004). One page, one figur

    Spectral Weights, d-wave Pairing Amplitudes, and Particle-hole Tunneling Asymmetry of a Strongly Correlated Superconductor

    Get PDF
    The spectral weights (SW's) for adding and removing an electron of the Gutzwiller projected d-wave superconducting (SC) state of the t-J-type models are studied numerically on finite lattices. Restrict to the uniform system but treat exactly the strong correlation between electrons, we show that the product of weights is equal to the pairing amplitude squared, same as in the weakly coupled case. In addition, we derive a rigorous relation of SW with doping in the electron doped system and obtain particle-hole asymmetry of the conductance-proportional quantity within the SC gap energy and, also, the anti-correlation between gap sizes and peak heights observed in tunneling spectroscopy on high Tc cuprates.Comment: 4 Revtex pages and 4 .eps figures. Published versio

    Quintessential Kination and Leptogenesis

    Full text link
    Thermal leptogenesis induced by the CP-violating decay of a right-handed neutrino (RHN) is discussed in the background of quintessential kination, i.e., in a cosmological model where the energy density of the early Universe is assumed to be dominated by the kinetic term of a quintessence field during some epoch of its evolution. This assumption may lead to very different observational consequences compared to the case of a standard cosmology where the energy density of the Universe is dominated by radiation. We show that, depending on the choice of the temperature T_r above which kination dominates over radiation, any situation between the strong and the super--weak wash--out regime are equally viable for leptogenesis, even with the RHN Yukawa coupling fixed to provide the observed atmospheric neutrino mass scale ~ 0.05 eV. For M< T_r < M/100, i.e., when kination stops to dominate at a time which is not much later than when leptogenesis takes place, the efficiency of the process, defined as the ratio between the produced lepton asymmetry and the amount of CP violation in the RHN decay, can be larger than in the standard scenario of radiation domination. This possibility is limited to the case when the neutrino mass scale is larger than about 0.01 eV. The super--weak wash--out regime is obtained for T_r << M/100, and includes the case when T_r is close to the nucleosynthesis temperature ~ 1 MeV. Irrespective of T_r, we always find a sufficient window above the electroweak temperature T ~ 100 GeV for the sphaleron transition to thermalize, so that the lepton asymmetry can always be converted to the observed baryon asymmetry.Comment: 13 pages, 8 figure
    • …
    corecore