675 research outputs found

    A method of storage and display of Chinese characters as graphic symbols

    Get PDF
    Not provided

    Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications

    Get PDF
    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100–300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection

    3D Magneto-Hydrodynamic Simulations of Parker Instability with Cosmic Rays

    Full text link
    This study investigates Parker instability in an interstellar medium (ISM) near the Galactic plane using three-dimensional magneto-hydrodynamic simulations. Parker instability arises from the presence of a magnetic field in a plasma, wherein the magnetic buoyant pressure expels the gas and cause the gas to move along the field lines. The process is thought to induce the formation of giant molecular clouds in the Galaxy. In this study, the effects of cosmic-ray (CR) diffusion are examined. The ISM at equilibrium is assumed to comprise a plasma fluid and a CR fluid at various temperatures, with a uniform magnetic field passing through it in the azimuthal direction of the Galactic disk. After a small perturbation, the unstable gas aggregates at the footpoint of the magnetic fields and forms dense blobs. The growth rate of the instability increases with the strength of the CR diffusion. The formation of dense clouds is enhanced by the effect of cosmic rays (CRs), whereas the shape of the clouds depends sensitively on the initial conditions of perturbation.Comment: 4 pages, Computer Physics Communications 2011, 182, p177-17

    A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis

    Get PDF
    Inflammation contributes to the development and progression of cancer. Interleukin-17 (IL-17) is an inflammatory cytokine that functions in inflammation and cancer, as well as several other cellular processes. In this study, we investigated the roles and the prognostic value of IL-17 and the IL-17 receptor (IL-17R) in lung cancer. Gene expression microarray analysis followed by Kaplan-Meier survival curve showed that IL-17B was associated with poor patient survival, and IL-17B receptor (IL-17RB) was up-regulated in lung cancer tissue compared with normal tissue. Expression of IL-17RB was associated with lymph node metastasis and distant metastasis, as well as poor patient survival. IL-17RB overexpression significantly increased cancer cell invasion/migration and metastasis in vitro and in vivo. IL-17RB induced ERK phosphorylation, resulting in GSK3β inactivation and leading to β-catenin up-regulation. IL-17RB also participated in IL-17B synthesis via the ERK pathway. IL-17RB activation is required for IL-17B-mediated ERK phosphorylation. Taken together, IL-17B-IL-17RB signaling and ERK participate in a positive feedback loop that enhances invasion/migration ability in lung cancer cell lines. IL-17RB may therefore serve as an independent prognostic factor and a therapeutic target for lung cancer

    The lift industry in Hong Kong : regulatory action and capacity building

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma.

    Get PDF
    Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis

    Flux tunable graphene-based superconducting quantum circuits coupled to 3D cavity

    Full text link
    Correlation between transmon and its composite Josephson junctions (JJ) plays an important role in designing new types of superconducting qubits based on quantum materials. It is desirable to have a type of device that not only allows exploration for use in quantum information processing but also probing intrinsic properties in the composite JJs. Here, we construct a flux-tunable 3D transmon-type superconducting quantum circuit made of graphene as a proof-of-concept prototype device. This 3D transmon-type device not only enables coupling to 3D cavities for microwave probes but also permits DC transport measurements on the same device, providing useful connections between transmon properties and critical currents associated with JJ's properties. We have demonstrated how flux-modulation in cavity frequency and DC critical current can be correlated under the influence of Fraunhofer pattern of JJs in an asymmetric SQUID. The correlation analysis was further extended to link the flux-modulated transmon properties, such as flux-tunability in qubit and cavity frequencies, with SQUID symmetry analysis based on DC measurements. Our study paves the way towards integrating novel materials for exploration of new types of quantum devices for future technology while probing underlying physics in the composite materials
    • …
    corecore