88 research outputs found

    Hierarchical modeling and speed control of networked induction motor systems

    Get PDF
    This paper proposes a hierarchical modeling method and a fuzzy speed control strategy for nonlinear networked induction motor systems subject to network induced time delay and packets dropout. The networked induction motor control system consists of a networked speed controller and a local controller. Fuzzy gain scheduling is applied on the networked speed controller to guarantee the robustness against complicated variations on the communication network. The state predictor is to compensate the time delay occurred in data transmission in the feedback channel. In stability analysis, the upper allowed limits of the time delay and packets dropout are calculated using the Lyapunov-Krasovskii theorem, respectively. Simulation and experimental results are given to illustrate the effectiveness of the proposed approach

    Scheduling and control co-design of networked induction motor control systems

    Get PDF
    This paper investigates the co-design of remote speed control and network scheduling for motion coordination of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS), while satisfying the constraints of stability and schedulability. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and online tuned by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results are given to illustrate the effectiveness of the proposed control-and-scheduling co-design approach

    Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming

    Get PDF
    Cross-layer design has been used in streaming video over the wireless channels to optimize the overall system performance. In this paper, we extend our previous work on joint design of source rate control and congestion control for video streaming over the wired channel, and propose a cross-layer design approach for wireless video streaming. First, we extend the QoS-aware congestion control mechanism (TFRCC) proposed in our previous work to the wireless scenario, and provide a detailed discussion about how to enhance the overall performance in terms of rate smoothness and responsiveness of the transport protocol. Then, we extend our previous joint design work to the wireless scenario, and a thorough performance evaluation is conducted to investigate its performance. Simulation results show that by cross-layer design of source rate control at application layer and congestion control at transport layer, and by taking advantage of the MAC layer information, our approach can avoid the throughput degradation caused by wireless link error, and better support the QoS requirements of the application. Thus, the playback quality is significantly improved, while good performance of the transport protocol is still preserved

    Flow dynamic of human cough and measuring techniques: A review

    Get PDF
    Coughing is one of the most important respiratory activities for air transmitted pathogens. It is essential to understand the dispersion of exhaled particles when coughing to improve the prevention measure and reduce the cross-infection risk. However, cough flow structure is complex and influenced by many parameters. Simplifications are often made to the initial flow condition when simulating the transport of particles expelled during coughing in laboratory or numerical studies . This study conducts a systematic literature review on human cough, especially focusing on flow dynamic characterization. First, the measuring techniques for identifying the airflow characteristic are summarized. The boundary conditions for cough, such as flow profile, flow direction, cough duration and are compared between different studies. Finally, the vortex structure of cough and its impact on cough particle dispersion is discussed

    The use of sensitive chemical antibodies for diagnosis: detection of low levels of Epcam in breast cancer

    Get PDF
    EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non- specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy

    Integrated feedback scheduling and control co-design for motion coordination of networked induction motor systems

    Get PDF
    This paper investigates the codesign of remote speed control and network scheduling for motion coordination of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS), while satisfying the constraints of stability and schedulability. A speed synchronization method is incorporated into the scheduling algorithm to improve the speed synchronization performance of multiple induction motors. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and tuned online by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay which occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results support the effectiveness of the proposed control-and-scheduling codesign approach

    Hierarchical modeling and speed control of networked induction motor systems

    Get PDF
    This paper proposes a hierarchical modeling method and a fuzzy speed control strategy for nonlinear networked induction motor systems subject to network induced time delay and packets dropout. The networked induction motor control system consists of a networked speed controller and a local controller. Fuzzy gain scheduling is applied on the networked speed controller to guarantee the robustness against complicated variations on the communication network. The state predictor is to compensate the time delay occurred in data transmission in the feedback channel. In stability analysis, the upper allowed limits of the time delay and packets dropout are calculated using the Lyapunov-Krasovskii theorem, respectively. Simulation and experimental results are given to illustrate the effectiveness of the proposed approach

    Integrated Feedback Scheduling and Control Codesign for Motion Coordination of Networked Induction Motor Systems

    Get PDF
    This paper investigates the codesign of remote speed control and network scheduling for motion coordination of multiple induction motors through a shared communication network. An integrated feedback scheduling algorithm is designed to allocate the optimal sampling period and priority to each control loop to optimize the global performance of a networked control system (NCS), while satisfying the constraints of stability and schedulability. A speed synchronization method is incorporated into the scheduling algorithm to improve the speed synchronization performance of multiple induction motors. The rational gain of the network speed controllers is calculated using the Lyapunov theorem and tuned online by fuzzy logic to guarantee the robustness against complicated variations on the communication network. Furthermore, a state predictor is designed to compensate the time delay which occurred in data transmission from the sensor to the controller, as a part of the networked controller. Simulation results support the effectiveness of the proposed control-and-scheduling codesign approach

    A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    Get PDF
    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures

    Superior performance of aptamer in tumor penetration over antibody : implication of aptamer-based theranostics in solid tumors

    Get PDF
    Insufficient penetration of therapeutic agents into tumor tissues results in inadequate drug distribution and lower intracellular concentration of drugs, leading to the increase of drug resistance and resultant failure of cancer treatment. Targeted drug delivery to solid tumors followed by complete drug penetration and durable retention will significantly improve clinical outcomes of cancer therapy. Monoclonal antibodies have been commonly used in clinic for cancer treatment, but their limitation of penetrating into tumor tissues still remains because of their large size. Aptamers, as "chemical antibodies", are 15-20 times smaller than antibodies. To explore whether aptamers are superior to antibodies in terms of tumor penetration, we carried out the first comprehensive study to compare the performance of an EpCAM aptamer with an EpCAM antibody in theranostic applications. Penetration and retention were studied in in vitro three-dimensional tumorspheres, in vivo live animal imaging and mouse colorectal cancer xenograft model. We found that the EpCAM aptamer can not only effectively penetrate into the tumorsphere cores but can also be retained by tumor sphere cells for at least 24 h, while limited tumor penetration by EpCAM antibody was observed after 4 h incubation. As observed from in vivo live animal imaging, EpCAM aptamers displayed a maximum tumor uptake at around 10 min followed by a rapid clearance after 80 min, while the signal of peak uptake and disappearance of antibody appeared at 3 h and 6 h after intravenous injection, respectively. The signal of PEGylated EpCAM aptamers in xenograft tumors was sustained for 26 h, which was 4.3-fold longer than that of the EpCAM antibody. Consistently, there were 1.67-fold and 6.6-fold higher accumulation of PEGylated aptamer in xenograft tumors than that of antibody, at 3 h and 24 h after intravenous administration, respectively. In addition, the aptamer achieved at least a 4-time better tumor penetration in xenograft tumors than that of the antibody at a 200 μm distances from the blood vessels 3 h after intravenous injection. Taken together, these data indicate that aptmers are superior to antibodies in cancer theranostics due to their better tumor penetration, more homogeneous distribution and longer retention in tumor sites. Thus, aptamers are promising agents for targeted tumor therapeutics and molecular imaging
    corecore