3,338 research outputs found

    Topological surface electronic states in candidate nodal-line semimetal CaAgAs

    Full text link
    We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-kzk_z-dispersive surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like pp-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.Comment: 6 pages, 5 figure

    Amyloid-like aggregates of neuronal tau induced by formaldehyde promote apoptosis of neuronal cells

    Get PDF
    BACKGROUND: The microtubule associated protein tau is the principle component of neurofibrillar tangles, which are a characteristic marker in the pathology of Alzheimer's disease; similar lesions are also observed after chronic alcohol abuse. Formaldehyde is a common environmental contaminant and also a metabolite of methanol. Although many studies have been done on methanol and formaldehyde intoxication, none of these address the contribution of protein misfolding to the pathological mechanism, in particular the effect of formaldehyde on protein conformation and polymerization. RESULTS: We found that unlike the typical globular protein BSA, the natively-unfolded structure of human neuronal tau was induced to misfold and aggregate in the presence of ~0.01% formaldehyde, leading to formation of amyloid-like deposits that appeared as densely staining granules by electron microscopy and atomic force microscopy, and bound the amyloid-specific dyes thioflavin T and Congo Red. The amyloid-like aggregates of tau were found to induce apoptosis in the neurotypic cell line SH-SY5Y and in rat hippocampal cells, as observed by Hoechst 33258 staining, assay of caspase-3 activity, and flow cytometry using Annexin V and Propidium Iodide staining. Further experiments showed that Congo Red specifically attenuated the caspase-3 activity induced by amyloid-like deposits of tau. CONCLUSION: The results suggest that low concentrations of formaldehyde can induce human tau protein to form neurotoxic aggregates, which could play a role in the induction of tauopathies

    Identification of metabolites of kurarinone from Sophora flavescens Ait in rat urine by ultra-performance liquid chromatography with linear ion trap orbitrap mass spectrometry

    Get PDF
    Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap-MS).Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium  (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode.Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant  metabolite that was excreted in rat urine.Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.Keywords: Kurarinone, Metabolites, Sophora flavescens Ait., Glucuronidation metabolite

    Density-driven higher-order topological phase transitions in amorphous solids

    Full text link
    Amorphous topological states, which are independent of the specific spatial distribution of microscopic constructions, have gained much attention. Recently, higher-order topological insulators, which are a new class of topological phases of matter, have been proposed in amorphous systems. Here, we propose a density-driven higher-order topological phase transition in a two-dimensional amorphous system. We demonstrate that the amorphous system hosts a topological trivial phase at low density. With an increase in the density of lattice sites, the topological trivial phase converts to a higher-order topological phase characterized by a quantized quadrupole moment and the existence of topological corner states. Furthermore, we confirm that the density-driven higher-order topological phase transition is size dependent. In addition, our results should be general and equally applicable to three-dimensional amorphous systems. Our findings may greatly enrich the study of higher-order topological states in amorphous systems
    corecore