38 research outputs found

    Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown.</p> <p>Results</p> <p>In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P < 0.05). Patients with positive CTGF expression had significantly lower cumulative postoperative 5 year survival rate than those with negative CTGF expression (22.9% versus 48.1%, P < 0.001). We demonstrated that knockdown of CTGF expression significantly inhibited cell growth of gastric cancer cells and decreased cyclin D<sub>1 </sub>expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines.</p> <p>Conclusions</p> <p>These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.</p

    B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease

    Get PDF
    Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or 'LCH cells'. Badalian-Very et al. recently reported the presence of a canonical (V600E)B-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients.Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using 'next generation' pyrosequencing. In 9 cases the mutation identified was (V600E)B-RAF. In 2 cases novel polymorphisms were identified. A somatic (600DLAT)B-RAF insertion mimicked the structural and functional consequences of the (V600E)B-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The (600DLAT)B-RAF and (V600E)B-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%-2% relative mutation abundance. A novel germ line (T599A)B-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, (T599A)B-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation.Our data confirmed presence of the (V600E)B-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that (V600E)B-RAF and (600DLAT)B-RAF mutations are somatic mutants enriched in LCH CD1a(+) cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line (T599A)B-RAF allele

    Binding of intercellular adhesion molecule 1 to beta(2)-integrin regulates distinct cell adhesion processes on hepatic and cerebral endothelium

    No full text
    Flowing polymorphonuclear neutrophils (PMNs) are forced to recruit toward inflamed tissue and adhere to vascular endothelial cells, which is primarily mediated by the binding of beta(2)-integrins to ICAM-1. This process is distinct among different organs such as liver and brain; however, the underlying kinetic and mechanical mechanisms regulating tissue-specific recruitment of PMNs remain unclear. Here, binding kinetics measurement showed that ICAM-1 on murine hepatic sinusoidal endothelial cells (LSECs) bound to lymphocyte function-associated antigen-1 (LFA-1) with higher on-and off-rates but lower effective affinity compared with macrophage-1 antigen (Mac-1), whereas ICAM-1 on cerebral endothelial cells (BMECs or bEnd. 3 cells) bound to LFA-1 with higher on-rates, similar off-rates, and higher effective affinity compared with Mac-1. Physiologically, free crawling tests of PMN onto LSEC, BMEC, or bEnd. 3 monolayers were consistent with those kinetics differences between two beta(2)-integrins interacting with hepatic sinusoid or cerebral endothelium. Numerical calculations and Monte Carlo simulations validated tissue-specific contributions of beta(2)-integrin-ICAM-1 kinetics to PMN crawling on hepatic sinusoid or cerebral endothelium. Thus, this work first quantified the biophysical regulation of PMN adhesion in hepatic sinusoids compared with cerebral endothelium

    Electrochemical impedance spectroscopy and atomic force microscopic studies of electrical and mechanical properties of nano-black lipid membranes and size dependence

    No full text
    We present electrochemical impedance spectroscopic (EIS) and two-chamber AFM investigations of the electrical and mechanical properties of solvent-containing nano-BLMs suspended on chip-based nanopores of diameter of 200, 400, and 700 nm. The chips containing nanoporous silicon nitride membranes are fabricated based on low-cost colloidal lithography with low aspect ratio of the nanopores. BLMs of DPhPC lipid molecules are constructed across the nanopores by the painting method. Two equivalent circuits are compared in view of their adequacy in description of the EIS performances of the nano-BLMs and more importantly the structures associated with the nano-BLMs systems. The BLM resistance and capacitance as well as their size and time dependence are studied by EIS. The breakthrough forces, elasticity in terms of apparent spring constant, and lateral tension of the solvent-containing nano-BLMs are investigated by AFM force measurements. The exact relationship of the breakthrough force of the nano-BLM as a function of pore size is revealed. Both EIS and AFM studies show increasing lifetime and mechanical stability of the nano-BLMs with decreasing pore size. Finally, the robust 200 nm diameter nanopores are used to accommodate functional BLMs containing DPhPC lipid molecules and gramicidins by using a painting method with drop of mixture solutions of DPhPC and gramicidins. EIS investigation of the functional nano-BLMs is also performed. 漏 2012 American Chemical Society

    A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway

    No full text
    Background/Aims: ALT1 is a novel long non-coding RNA derived from the alternatively spliced transcript of the deleted in lymphocytic leukemia 2 (DLEU2). To date, ALT1 biological roles in human vascular endothelial cells have not been reported. Methods: ALT1 was knocked down by siRNAs. Cell proliferation was analyzed by cck-8. The existence and sequence of human ALT1 were identified by 3’ rapid amplification of cDNA ends. The interaction between lncRNA and proteins was analyzed by RNA-Protein pull down assay, RNA immunoprecipitation, and mass spectrometry analysis. Results: ALT1 was expressed in human umbilical vein endothelial cells (HUVECs). The expression of ALT1 was significantly downregulated in contact-inhibited HUVECs and in hypoxia-induced, growth-arrested HUVECs. Knocking down of ALT1 inhibited the proliferation of HUVECs by G0/G1 cell cycle arrest. We observed that angiotensin converting enzyme Ⅱ(ACE2) was a direct target gene of ALT1. Knocking-down of ALT1 or its target gene ACE2 could efficiently decrease the expression of cyclin D1 via the enhanced ubiquitination and degradation, in which HIF-1α and protein von Hippel-Lindau (pVHL) might be involved. Conclusion: The results suggested the human long non-coding RNA ALT1 is a novel regulator for cell cycle of HUVECs via ACE2 and cyclin D1 pathway

    Investigating the Role of the Post-transcriptional Gene Regulator MiR-24-3p in the Proliferation, Migration and Apoptosis of Human Arterial Smooth Muscle Cells in Arteriosclerosis Obliterans

    No full text
    Aims: To explore the expression of miR-24-3p in human arteries with arteriosclerosis obliterans (ASO) as well as the role of miR-24-3p in the pathogenesis of ASO. Methods: We used quantitative real-time PCR (qRT-PCR) and in situ hybridization to monitor miR-24-3p expression in human arteries. To investigate the effect of miR-24-3p on human arterial smooth muscle cells (HASMCs), we applied cell counting and EdU assays to monitor proliferation and transwell and wound healing assays to investigate migration and flow cytometry to investigate apoptosis. Furthermore, we applied 3'-untranslated region (3'-UTR) luciferase assays to investigate the role of miR-24-3p in targeting platelet-derived growth factor receptor B (PDGFRB) and c-Myc. Results: MiR-24-3p was mainly located in the media of arteries and was downregulated in ASO arteries compared with normal arteries. Platelet-derived growth factor BB (PDGF-BB) treatment reduced the expression of miR-24-3p in primary cultured HASMCs. MiR-24-3p mimic oligos inhibited the proliferation and migration, and promotes apoptosis of HASMCs. Our 3'-UTR luciferase assays confirmed that PDGFRB and c-Myc were targets of miR-24-3p. Conclusion: The results suggest that miR-24-3p regulates the proliferation and migration of HASMCs by targeting PDGFRB and c-Myc. The PDGF/miR-24-3p/PDGFRB and PDGF/miR-24-3p/c-Myc pathways may play critical roles in the pathogenesis of ASO. These findings highlight the potential for new therapeutic targets for ASO
    corecore