14,596 research outputs found
Swift Observations of X-ray supernovae
We present a result of X-ray supernovae (SNe) survey using the Swift
satellite public archive. An automatic searching program was designed to search
X-ray SNe among all of the Swift archival observations between November 2004
and February 2011. Using the C++ program, 24 X-ray detectable supernovae have
been found in the archive and 3 of them were newly-discovered in X-rays which
are SN 1986L, SN 2003lx, and SN 2007od. In addition, SN 2003lx is a Type Ia
supernova which may be the second X-ray detectable Type Ia after SN 2005ke
(Immler et al. 2006). Calibrated data of luminous type Ib/c supernovae was
consistent to the X-ray emission model done by Chevalier & Fransson (1994).
Statistics about the luminosities and hardness ratio have been done to purpose
of getting the X-ray emission features of the X-ray supernovae. The results
from this work help investigating the X-ray evolution of SNe and developing
similar X-ray SNe surveys in various X-rays missions
TeV leptogenesis in Z-prime models and its collider probe
We show that the U(1)-prime models linked with the seesaw mechanism at TeV
scale can lead to a successful baryogenesis through soft leptogenesis with a
resonant behavior in the B parameter. Such a consideration constrains the
Z-prime mass to be larger than 2-3 TeV depending on the seesaw scale and the
spharelon rate. Together with multi-TeV Z-prime, large sneutrino-antisneutrino
mixing and CP violating phenomena required by TeV leptogenesis could be
searched for in future colliders by observing the distinct same-sign
dilepton--dichargino as well as dislepton--diHiggs signatures.Comment: 10 pages with 2 figure
A Stochastic Geometric Analysis of Device-to-Device Communications Operating over Generalized Fading Channels
Device-to-device (D2D) communications are now considered as an integral part
of future 5G networks which will enable direct communication between user
equipment (UE) without unnecessary routing via the network infrastructure. This
architecture will result in higher throughputs than conventional cellular
networks, but with the increased potential for co-channel interference induced
by randomly located cellular and D2D UEs. The physical channels which
constitute D2D communications can be expected to be complex in nature,
experiencing both line-of-sight (LOS) and non-LOS (NLOS) conditions across
closely located D2D pairs. As well as this, given the diverse range of
operating environments, they may also be subject to clustering of the scattered
multipath contribution, i.e., propagation characteristics which are quite
dissimilar to conventional Rayeligh fading environments. To address these
challenges, we consider two recently proposed generalized fading models, namely
and , to characterize the fading behavior in D2D
communications. Together, these models encompass many of the most widely
encountered and utilized fading models in the literature such as Rayleigh, Rice
(Nakagami-), Nakagami-, Hoyt (Nakagami-) and One-Sided Gaussian. Using
stochastic geometry we evaluate the rate and bit error probability of D2D
networks under generalized fading conditions. Based on the analytical results,
we present new insights into the trade-offs between the reliability, rate, and
mode selection under realistic operating conditions. Our results suggest that
D2D mode achieves higher rates over cellular link at the expense of a higher
bit error probability. Through numerical evaluations, we also investigate the
performance gains of D2D networks and demonstrate their superiority over
traditional cellular networks.Comment: Submitted to IEEE Transactions on Wireless Communication
Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals
When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes
from a band metal to a polaronic insulator. The Hall constant R_H, through its
activated behavior and sign anomaly, provides key evidence for polaronic
behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the
polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below,
the activation energies of both R_H and the mobility deviate strongly from
their polaronic values. These changes reflect the presence of metallic,
ferromagnetic fluctuations, in the volume of which the Hall effect develops
additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi
Quintessential Kination and Leptogenesis
Thermal leptogenesis induced by the CP-violating decay of a right-handed
neutrino (RHN) is discussed in the background of quintessential kination, i.e.,
in a cosmological model where the energy density of the early Universe is
assumed to be dominated by the kinetic term of a quintessence field during some
epoch of its evolution. This assumption may lead to very different
observational consequences compared to the case of a standard cosmology where
the energy density of the Universe is dominated by radiation. We show that,
depending on the choice of the temperature T_r above which kination dominates
over radiation, any situation between the strong and the super--weak wash--out
regime are equally viable for leptogenesis, even with the RHN Yukawa coupling
fixed to provide the observed atmospheric neutrino mass scale ~ 0.05 eV. For M<
T_r < M/100, i.e., when kination stops to dominate at a time which is not much
later than when leptogenesis takes place, the efficiency of the process,
defined as the ratio between the produced lepton asymmetry and the amount of CP
violation in the RHN decay, can be larger than in the standard scenario of
radiation domination. This possibility is limited to the case when the neutrino
mass scale is larger than about 0.01 eV. The super--weak wash--out regime is
obtained for T_r << M/100, and includes the case when T_r is close to the
nucleosynthesis temperature ~ 1 MeV. Irrespective of T_r, we always find a
sufficient window above the electroweak temperature T ~ 100 GeV for the
sphaleron transition to thermalize, so that the lepton asymmetry can always be
converted to the observed baryon asymmetry.Comment: 13 pages, 8 figure
A Comprehensive Analysis of 5G Heterogeneous Cellular Systems operating over - Shadowed Fading Channels
Emerging cellular technologies such as those proposed for use in 5G
communications will accommodate a wide range of usage scenarios with diverse
link requirements. This will include the necessity to operate over a versatile
set of wireless channels ranging from indoor to outdoor, from line-of-sight
(LOS) to non-LOS, and from circularly symmetric scattering to environments
which promote the clustering of scattered multipath waves. Unfortunately, many
of the conventional fading models adopted in the literature to develop network
models lack the flexibility to account for such disparate signal propagation
mechanisms. To bridge the gap between theory and practical channels, we
consider - shadowed fading, which contains as special cases, the
majority of the linear fading models proposed in the open literature, including
Rayleigh, Rician, Nakagami-m, Nakagami-q, One-sided Gaussian, -,
-, and Rician shadowed to name but a few. In particular, we apply an
orthogonal expansion to represent the - shadowed fading
distribution as a simplified series expression. Then using the series
expressions with stochastic geometry, we propose an analytic framework to
evaluate the average of an arbitrary function of the SINR over -
shadowed fading channels. Using the proposed method, we evaluate the spectral
efficiency, moments of the SINR, bit error probability and outage probability
of a -tier HetNet with classes of BSs, differing in terms of the
transmit power, BS density, shadowing characteristics and small-scale fading.
Building upon these results, we provide important new insights into the network
performance of these emerging wireless applications while considering a diverse
range of fading conditions and link qualities
Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves.
Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease
On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi
We use one-loop chiral perturbation theory to compare potential lattice
computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the
experimental value. We find that the combined one-loop effect due to this
unphysical pion to kaon mass ratio and typical finite volume effects is still
of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte
- …