2,408 research outputs found
Recommended from our members
Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair.
Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation
Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance
Eigenphase shifts and eigentime delays near a resonance for a system of one
discrete state and two continua are shown to be functionals of the Beutler-
Fano formulas using appropriate dimensionless energy units and line profile
indices. Parameters responsible for the avoided crossing of eigenphase shifts
and eigentime delays are identified. Similarly, parameters responsible for the
eigentime delays due to a frame change are identified. With the help of new
parameters, an analogy with the spin model is pursued for the S matrix and time
delay matrix. The time delay matrix is shown to comprise three terms, one due
to resonance, one due to a avoided crossing interaction, and one due to a frame
change. It is found that the squared sum of time delays due to the avoided
crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe
Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem
The problem of the origin of the mu parameter in the Minimal Supersymmetric
Standard Model can be solved by introducing singlet supermultiplets with
non-renormalizable couplings to the ordinary Higgs supermultiplets. The
Peccei-Quinn symmetry is broken at a scale which is the geometric mean between
the weak scale and the Planck scale, yielding a mu term of the right order of
magnitude and an invisible axion. These models also predict one or more singlet
fermions which have electroweak-scale masses and suppressed couplings to MSSM
states. I consider the case that such a singlet fermion, containing the axino
as an admixture, is the lightest supersymmetric particle. I work out the
relevant couplings in several of the simplest models of this type, and compute
the partial decay widths of the next-to-lightest supersymmetric particle
involving leptons or jets. Although these decays will have an average proper
decay length which is most likely much larger than a typical collider detector,
they can occasionally occur within the detector, providing a striking signal.
With a large sample of supersymmetric events, there will be an opportunity to
observe these decays, and so gain direct information about physics at very high
energy scales.Comment: 24 pages, LaTeX, 4 figure
Occlusal reduction of unilateral molars influences change of stress-related hormones in rats
In order to investigate the change of stress-related hormones by dental occlusal reduction, we ground molars in Sprague-Dawley (SD) rats and evaluated the effect on hormone levels. Thirteen and 18 weeks after occlusal reduction, cortisol concentration was increased 2.75 and 2.17 fold respectively, whereas corticosterone concentration was slightly elevated by 31.2% and 13.5%, respectively. Body weight was slightly decreased, but feed and water intake, and blood chemistry were the same in the experimental group as in the control group. Our results suggest that unilateral molar occlusal reduction may influence cortisol and corticosterone levels and the endocrine system, leading to hormone imbalance through the body.
Fluctuations of the Retarded Van der Waals Force
The retarded Van der Waals force between a polarizable particle and a
perfectly conducting plate is re-examined. The expression for this force given
by Casimir and Polder represents a mean force, but there are large fluctuations
around this mean value on short time scales which are of the same order of
magnitude as the mean force itself. However, these fluctuations occur on time
scales which are typically of the order of the light travel time between the
atom and the plate. As a consequence, they will not be observed in an
experiment which measures the force averaged over a much longer time. In the
large time limit, the magnitude of the mean squared velocity of a test particle
due to this fluctuating Van der Waals force approaches a constant, and is
similar to a Brownian motion of a test particle in an thermal bath with an
effective temperature. However the fluctuations are not isotropic in this case,
and the shift in the mean square velocity components can even be negative. We
interpret this negative shift to correspond to a reduction in the velocity
spread of a wavepacket. The force fluctuations discussed in this paper are
special case of the more general problem of stress tensor fluctuations. These
are of interest in a variety of areas fo physics, including gravity theory.
Thus the effects of Van der Waals force fluctuations serve as a useful model
for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure
A gauge-mediated supersymmetry breaking model with an extra singlet Higgs field
We study in some detail the next-to-minimal supersymmetric standard model
with gauge mediation of supersymmetry breaking. We find that it is feasible to
spontaneously generate values of the Higgs mass parameters and
consistent with radiative electroweak symmetry breaking. The model has a
phenomenologically viable particle spectrum. Messenger sneutrinos with mass in
the range 6 to 25 TeV can serve as cold dark matter. It is also possible to
evade the cosmological domain wall problem in this scenario.Comment: revised version to appear in PR
Health monitoring in composite structures using piezoceramic sensors and fiber optic sensors
Abstract: Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this presentation, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors
Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength
We calculate the nonlinear magneto-optical response of free-standing fcc
(001), (110) and (111) oriented Fe monolayers. The bandstructures are
determined from first principles using a full-potential LAPW method with the
additional implementation of spin-orbit coupling. The variation of the
spin-orbit coupling strength and the nonlinear magneto-optical spectra upon
layer orientation are investigated. We find characteristic differences which
indicate an enhanced sensitivity of nonlinear magneto-optics to surface
orientation and variation of the in-plane lattice constants. In particular the
crossover from onedimensional stripe structures to twodimensional films of
(111) layers exhibits a clean signature in the nonlinear Kerr-spectra and
demonstrates the versatility of nonlinear magneto-optics as a tool for in situ
thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
Neutrino Anomalies in Gauge Mediated Model with Trilinear R violation
The structure of neutrino masses and mixing resulting from trilinear
violating interactions is studied in the presence of the gauge mediated
supersymmetry breaking. Neutrino masses arise in this model at tree level
through the RG-induced vacuum expectation values of the sneutrinos and also
through direct contribution at 1-loop. The relative importance of these
contributions is determined by the values of the strong and weak coupling
constants. In case of purely couplings, the tree contribution
dominates over the 1-loop diagram. In this case, one simultaneously obtains
atmospheric neutrino oscillations and quasi-vacuum oscillations of the solar
neutrinos if all the \l' couplings are assumed to be of similar magnitudes.
If R parity violation arises from the trilinear \l couplings, then the loop
induced contribution dominates over the tree level. One cannot simultaneously
explain the solar and atmospheric deficit in this case if all the \l
couplings are of similar magnitude. This however becomes possible with
hierarchical \l and we give a specific example of this.Comment: 26 pages Latex, 2 figures, certain sections rewritten, improved
discussion about derivations added. To appear in Physical Review
- …