15,538 research outputs found

    Effects of motion on jet exhaust noise from aircraft

    Get PDF
    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles

    Steady-state traffic flow on a ring road with up- and down- slopes

    Get PDF
    This paper studies steady-state traffic flow on a ring road with up- and down- slopes using a semi-discrete model. By exploiting the relations between the semi-discrete and the continuum models, a steady-state solution is uniquely determined for a given total number of vehicles on the ring road. The solution is exact and always stable with respect to the first-order continuum model, whereas it is a good approximation with respect to the semi-discrete model provided that the involved equilibrium constant states are linearly stable. In an otherwise case, the instability of one or more equilibria could trigger stop-and-go waves propagating in certain road sections or throughout the ring road. The indicated results are reasonable and thus physically significant for a better understanding of real traffic flow on an inhomogeneous road

    Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    Full text link
    When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes from a band metal to a polaronic insulator. The Hall constant R_H, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below, the activation energies of both R_H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi

    The Discovery of Extended Thermal X-ray Emission from PKS 2152-699: Evidence for a `Jet-cloud' Interaction

    Full text link
    A Chandra ACIS-S observation of PKS 2152-699 reveals thermal emission from a diffuse region around the core and a hotspot located 10" northeast from the core. This is the first detection of thermal X-ray radiation on kiloparsec scales from an extragalactic radio source. Two other hotspots located 47" north-northeast and 26" southwest from the core were also detected. Using a Raymond-Smith model, the first hotspot can be characterized with a thermal plasma temperature of 2.6×106\times10^6 K and an electron number density of 0.17 cm3^{-3}. These values correspond to a cooling time of about 1.6×107\times10^7 yr. In addition, an emission line from the hotspot, possibly Fe xxv, was detected at rest wavelength 10.04\AA. The thermal X-ray emission from the first hotspot is offset from the radio emission but is coincident with optical filaments detected with broadband filters of HST/WFPC2. The best explanation for the X-ray, radio, and optical emission is that of a `jet-cloud' interaction. The diffuse emission around the nucleus of PKS 2152-699 can be modeled as a thermal plasma with a temperature of 1.2×107\times10^7 K and a luminosity of 1.8×1041\times10^{41} erg s1^{-1}. This emission appears to be asymmetric with a small extension toward Hotspot A, similar to a jet. An optical hotspot (EELR) is seen less than an arcsecond away from this extension in the direction of the core. This indicates that the extension may be caused by the jet interacting with an inner ISM cloud, but entrainment of hot gas is unavoidable. Future observations are discussed.Comment: To appear in the Astrophysical Journal 21 pages, 5 Postscript figures, 1 table, AASTeX v. 5.

    Berry's phase contribution to the anomalous Hall effect of gadolinium

    Full text link
    When conduction electrons are forced to follow the local spin texture, the resulting Berry phase can induce an anomalous Hall effect (AHE). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the AHE may therefore resemble that of chromium dioxide and other metallic double-exchange ferromagnets. The Hall resistivity, magnetoresistance, and magnetization of single crystal gadolinium were measured in fields up to 30 T. Measurements between 2 K and 400 K are consistent with previously reported data. A scaling analysis for the Hall resistivity as a function of the magnetization suggests the presence of a Berry's-phase contribution to the anomalous Hall effect.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    In an Attempt to Introduce Long-range Interactions into Small-world Networks

    Full text link
    Distinguishing the long-range bonds with the regular ones, the critical temperature of the spin-lattice Guassian model built on two typical Small-world Networks (SWNs) is studied. The results show much difference from the classical case, and thus may induce some more accurate discussion on the critical properties of the spin-lattice systems combined with the SWNs.Comment: 4 pages, 3 figures, 18 referenc
    corecore