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Abstract: Steady-state traffic flow on a ring road with up- and down-slopes is investigated using a

semi-discrete model. By exploiting the relations between the semi-discrete and continuum models, a

steady-state solution is uniquely determined for a given total number of vehicles on a ring road. The

solution is exact and always stable with respect to the first-order continuum model, whereas it is a

good approximation with respect to the semi-discrete model provided that the involved equilibrium

constant states are linearly stable. In other cases, the instability of one or more equilibria could

trigger stop-and-go waves propagating in certain sections of road or throughout the ring road. The

indicated results are reasonable and thus physically significant for better understanding of real-world

traffic flow on inhomogeneous roads, such as those with junctions or bottlenecks.

Keywords: semi-discrete model; inhomogeneous road conditions; discontinuous fluxes; bottleneck;

instability
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1 Introduction

In statistical physics, traffic flow has been viewed as a self-organized critical system [1, 2], and

typical phases such as free flow, congestion, jamming together, and their transitions have been

interpreted by a fundamental diagram (see [3] and references therein) and the three-phase theory [4,5].

More recently, traffic has been considered a coevolutionary process, and game theory has been used

to depict driving behavior [6, 7]. As shown with the Biham-Middleton-Levine (BML) model [8],

the choice between cooperation and defection exerts significant influence on the evolution of traffic

states [6]. These theories were developed with large amounts of modeling and simulation assuming

homogeneous road conditions (e.g., a single road with a uniform fundamental diagram).

In contrast, the influence of inhomogeneous road conditions (more generally those with bottle-

necks or junctions) on traffic states has become a major concern in the development of traffic flow

theory (e.g., see [3, 9]). In macroscopic modeling, the Riemann problem with discontinuous fluxes

was studied mainly to design a numerical scheme that could be related to the theory of hyperbolic

conservation laws with discontinuous fluxes [10–17]. In microscopic car-following modeling, steady-

state flow over inhomogeneous sections of road was analytically or numerically studied by assuming

or implying that the solution is a piecewise equilibrium constant in the inhomogeneous sections of

road [18–23].

Such a steady-state solution can be described using the kinetic theory or the theory of hyperbolic

conservation laws with discontinuous fluxes [14, 21], which is exact and stable for the first-order

continuum Lighthill-Whitham-Richards (LWR) model [24,25]. However, it offers only an approximate

solution to the car-following model or the higher-order model with relaxation if the relaxation time

is sufficiently small; otherwise, it is unnecessarily stable due to the underlying metastability in

these models. Nevertheless, this feature has not yet been well recognized or emphasized in the

aforementioned studies of the car-following model.

In this context, the present paper addresses the problem using a semi-discrete model, which can

be viewed as an extension of, and thus is more general than, the car-following model [26]. We enhance

the mathematical analysis of steady-state flow on a ring road with up- and down-slopes, which poses

more complexity for the solution. We also emphasize the instability of the solution with physical

interpretation through the analysis of all equilibrium states and numerical simulation. Equilibrium

traffic flow with an intermediate density value is widely regarded as unstable on a homogeneous ring

road, which with oscillations is liable to evolve into stop-and-go waves (e.g., see [27–33]). Although

the ring road discussed herein is much more complicated, and the simulation does not completely

agree with the analytical results due to errors in the analysis, the steady-state solution is shown

to have a similar tendency. That is, it is highly stable for large or small numbers of vehicles on
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the ring road, and is unstable for intermediate numbers of vehicles. This result is important for

understanding the macroscopic properties of traffic flow on an inhomogeneous road.

In Section 2 of this paper, the semi-discrete model and its correlation with the continuum model

are discussed, and the linear stability condition for an equilibrium solution state is indicated. In

Section 3, the wave pattern at a stationary interface is described using the theory of hyperbolic

conservation laws with discontinuous fluxes, which helps to determine the two adjacent equilibrium

constant states. Accordingly, the wave types of the steady-state solution on a ring road with up-

and down-slopes, which depend on the total number of vehicles on the ring road, are indicated

analytically. In Section 4, initial distributions with certain total numbers of vehicles are shown to

converge to or diverge from the corresponding steady-state solutions through numerical simulation,

which generally agrees with the analytical results. Concluding remarks are given in Section 5.

2 The semi-discrete model

In the semi-discrete model [26], a moving “particle” in traffic flow could be numbered by m with

xm(t) being its position, and

dxm(t)

dt
= um(t), m = 0,±1,±2, · · · (1)

being its speed, and the acceleration can be defined through

d

dt
[um(t) + p(sm(t))] =

1

τ
[ue(sm(t))− um(t)]. (2)

Here,

sm(t) = [xm+1(t)− xm(t)]/∆M, and ρm(t) ≡ (sm(t))−1, (3)

are the specific volume and the density, respectively, represented by the particle m, ∆M is the

mass between the particles m and m + 1, and ue(s) and p(s) are the equilibrium velocity-density

relationship and the traffic pressure satisfying u′e(s) > 0, and p′(s) ≤ 0. For ∆M = 1, the semi-

discrete model of (1) and (2) reduces to a car-following model, in which case each particle can be

viewed as a vehicle in that there is just one vehicle between the heads of two adjacent vehicles. The

resulting car-following model is essentially the same as that in [31,32,34].

2.1 Correlation to the continuum model in Lagrange coordinates

Assume that there is no overtake between particles for division with a sufficiently small increment

∆M , and let M denote the total mass not passing through particle m. This implies that M referring
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to particle m is independent of time t. Therefore, particle m can be identified by M and an associated

variable Am(t) (e.g., the position xm(t) and speed vm(t)) can be re-denoted by A(M, t). Let ∆M → 0,

then the flow can be viewed as a continuum in which M and t constitute the Lagrange coordinate

system to describe the variable A(M, t). In this case, Eq. (3) gives

s(M, t) = xM (M, t), and ρ(M, t) = (s(M, t))−1. (4)

Furthermore, we reduce Eq. (1) from dxm+1(t)/dt = um+1(t) and divide the resulting equation by

∆M . Then, for ∆M → 0, we have the following partially differential equation:

st(M, t)− uM (M, t) = 0. (5)

It is obvious that for ∆M → 0, Eq. (2) yields

[u(M, t) + p(s(M, t))]t =
ue(s(M, t))− u(M, t)

τ
. (6)

The discussion implies the consistency between the semi-discrete model (1)-(2) and the continuum

model (5)-(6), namely, the former system converges to the latter system for ∆M → 0.

2.2 Correlation to the continuum model in Euler coordinates

Let A(M, t) now be denoted by the Euler coordinates (x, t) with A(M, t) = A(x, t), where x = x(M, t)

is the position. We have

At(x, t) = Ax(x, t)xt(M, t) +At(x, t), AM (x, t) = Ax(x, t)xM (M, t), (7)

where xt(M, t) = u(M, t) = u(x, t), and xM (M, t) = s(M, t) = s(x, t) = 1/ρ(x, t), according to Eqs.

(1) and (4). Replacing the partial derivatives of s(M, t) and u(M, t) in Eqs. (5)-(6) through Eq. (7),

we have

ρt + (ρu)x = 0, (8)

[ρ(u+ P (ρ))]t + [ρu(u+ P (ρ))]x =
ρUe(ρ)− ρu

τ
, (9)

where P (ρ) = p(s), Ue(ρ) = ue(s), and ρ = 1/s. The system of (8)-(9) turns out to be the so called

“anisotropic” higher-order traffic flow model [35–38]. This again establishes the correlation between

the microscopic semi-discrete model and the macroscopic continuum model.

The consistency between the aforementioned three systems implies that the solution to the semi-

discrete model should converge to the solution to the other two systems for ∆M → 0.
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2.3 Stability of the equilibrium solution

An equilibrium constant state (ρ0, Ue(ρ0)) or (s0, ue(s0)) is linearly stable with respect to the higher-

order model (8)-(9) or (5)-(6) if

U ′
e(ρ0) + P ′(ρ0) ≥ 0, or u′e(s0) + p′(s0) ≤ 0. (10)

This corresponds to an equilibrium state

x0m+1(t)− x0m(t) = s0∆M, or x0m(t) = ue(s0)t+m∆Ms0, (11)

in the semi-discrete model (1)-(2), which is linearly stable if

u′e(s0) + p′(s0) ≤
∆M

2τ
. (12)

As ∆M → 0, Eq. (12) reduces to Eq. (10), which also indicates the consistency between the

continuum and the semi-discrete models. See [26] for a detailed discussion.

3 The steady-state solution over inhomogeneous sections of road

For discussion of the steady-state solution, the system (8)-(9) under the Euler coordinates is con-

venient for dealing with the interface between two inhomogeneous road sections. For a sufficiently

small τ , Eq. (9) is approximated by u = Ue(ρ), which together with Eq. (8) leads to the following

LWR model [24,25]:

ρt + (Qe(ρ))x = 0, (13)

where Qe(ρ) = ρUe(ρ) is the flow-density relationship or fundamental diagram.

3.1 General discussion of the solution

In general, the steady-state solution (ρ(x, t), u(x, t)) = (ρ(x), u(x)) of (13) on an inhomogeneous road

is piecewise constant, satisfying the equilibrium condition u(x) = Ue(ρ(x)). At each dividing point or

interface, the flow q ≡ ρu = Qe(ρ) is continuous and thus is constant over the entire road. However,

density ρ(x) and velocity u(x) are usually discontinuous at the dividing point, which can be either a

contact between two inhomogeneous sections of road or a stationary shock in a homogeneous section

of road.

The constancy of the flow at the dividing point is attributed to the mass conservation or the

Rankine-Hugoniot condition (see [11–14] and references therein). Let ρ = ρ∓ and Q∓
e denote the
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densities and the fundamental diagrams on the left and the right sides of the interface. Then, the

mass conservation is simply that

Q−
e (ρ−) = Q+

e (ρ+). (14)

For the dividing point that is stationary, a “wave entropy” condition can be applied at the interface

to describe valid wave breaking on both sides [11–14]. That is, the characteristic speeds on the two

sides take the same sign with

(Q−
e (ρ−))

′(Q+
e (ρ+))

′ > 0. (15)

Otherwise, we have

(Q+
e (ρ+))

′ ≥ 0, if (Q−
e (ρ−))

′ = 0; (16)

and

(Q−
e (ρ−))

′ ≤ 0, if (Q+
e (ρ+))

′ = 0. (17)

See also [15,16] for a similar entropy condition.
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Fig. 1 Four wave patterns at a joint, obeying the conservation of (14), such that the outflow Q−
e (ρ−) equals the inflow

Q+
e (ρ+), where Q∓

e (ρ) are the fundamental diagrams on the upstream and downstream road sections. (a) and (d):

normal and congested wave patterns associated with Eq. (15); (b) and (c): wave patterns with upstream and

downstream traffic at capacity associated with Eqs. (16) and (17). These help determine ρ±.
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We assume that the critical densities are ρ∗− and ρ∗+ with Qe(ρ
∗
−) and Qe(ρ

∗
+) being the maximal

flows or capacities on the left- and the right-hand sides, i.e.,

(Q∓
e (ρ

∗
∓))

′ = 0, (ρ− ρ∗∓)(Q
∓
e (ρ))

′ < 0, for ρ ̸= ρ∗∓. (18)

For the discussed steady-state solution ρ = ρ(x), we obviously have

Qe(ρ(x)) ≤ min(Q−
e (ρ

∗
−), Q

+
e (ρ

∗
+)), (19)

and the term on the right-hand side is defined as the capacity with respect to the two divided

sections. Thus, we have four wave patterns at the interface (Fig. 1). The normal and the congested

wave patterns (Figs. 1(a) and (d), respectively) are associated with Eq. (15). Wave patterns with

upstream and downstream traffic at capacity (Fig. 1(b) and (c), respectively) are associated with Eq.

(16) and (17) and occur only if Q−
e (ρ

∗
−) ≤ Q+

e (ρ
∗
+) or vice versa. We call the interface a bottleneck if

Q−
e (ρ

∗
−) > Q+

e (ρ
∗
+), which triggers a queue upstream from the interface when the traffic downstream

is at capacity.

3.2 The solution on a ring road with up- and down-slopes

Steady-state flow on an inhomogeneous highway road is characterized by the wave pattern at each of

the interfaces. For a road with up- and down-slopes, we adopt the following velocity-specific volume

relationship:

ue(s) =
uf (β)[tanh(s/l − xc(β)/l) + tanh(xc(β)/l − 1)]

1 + tanh(xc(β)/l − 1)
, (20)

where β is the slope, l the vehicle length, and uf (β) the free-flow velocity. We can easily see that

ue(l) = 0, ue(+∞) = uf (β), and u′e(s) > 0, for s ≥ l. By the relations Ue(ρ) = ue(s), ρ = s−1,

we correspondingly have U ′
e(ρ) < 0, for ρ ∈ [0, ρjam], and Ue(ρjam) = 0, Ue(0) = uf (β), where

ρjam = 1/l is the jamming density. By scaling, the free-flow velocity uf (β) and the safe interval

xc(β) are determined by the following piecewise functions:

uf (β)

uf (0)
=


−100β2 − 5β + 1, −0.10 ≤ β < 0,

1, 0 ≤ β < 0.02,

−150β2 + 3β + 1, 0.02 ≤ β ≤ 0.08,

0.28, 0.08 < β ≤ 0.10,

uf (0) = 30 m/s, (21)

and

xc(β)

l
=

 300β2 − 12β + 3, −0.10 ≤ β < 0,

80β2 + 15β + 3, 0 ≤ β ≤ 0.10,
l = 4.5 m, (22)
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The formula (20) is extended from that in [32], and Eqs. (21)-(22) are based on the experimental

study in [39]. The formula (20) can also be viewed as a modification of that in [22], which was

extended from that in [40]. We note that the properties of (18) can be verified for |β| ≤ 0.1.

(a)
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L1

2
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D 1L

L L2DP
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P L P

P
1

1U

(b)
 

 

0

q

ρ

QL
e
(ρ)

QD
e

(ρ)
QU

e
(ρ)

Fig. 2 (a) The clockwise ring road R = L1 ∪ U ∪ L2 ∪D, with the lengths |R| = 6750m, |L1| = 4050m, |U | = 675m,

and |D| = 675m; (b) the fundamental diagrams q = QL
e (ρ), q = QU

e (ρ), and q = QD
e (ρ), for the level road sections

L1 ∪L2, the up-slope section U , and the down-slope section D, respectively, which are defined through Eqs. (20)-(22).

We now consider a clockwise ring road R which is composed of four sections: (i) the level road

L1 with β = 0; the up-slope U with β = 0.04; the level road L2 with β = 0; and the down-slope D

with β = −0.04. The joints between two adjacent sections are denoted by PL1U , PUL2 , PL2D, and

PDL1 . The ring road is shown in Fig. 2(a), and the fundamental diagrams q = Qe(ρ) for all sections

are shown in Fig. 2(b). We see that by Fig. 2(b),

Qs ≤ min(QL
e (ρ

∗
L), Q

U
e (ρ

∗
U ), Q

D
e (ρ

∗
D)) = QU

e (ρ
∗
U ) ≡ Qc, (23)

where Qs = Qe(ρ(x)) is the flow corresponding to the steady-state solution ρ(x), and Qc is defined as

the capacity of the ring road. Eq. (23) is the extension of Eq. (19). Given Qs, we have two solution

values of ρ(x) through Eqs. (20)-(22). However, ρ(x) can be uniquely determined according to the

wave pattern at each dividing point. In fact, Qs together with the wave patterns can be uniquely

determined by the total number N of vehicles on the ring road, which is indicated in the following

discussion by referring to Figs. 2(a) and (b).

For N increasing from N = 0, Qs increases until it reaches capacity with Qs = Qc, when the

total number of vehicles

Nt1 =
∑
χ

|χ|ρχ, χ = L1, U, L2, D. (24)

Here, |χ| and ρχ represent the lengths of and the densities in the four sections divided by PL1U ,

PUL2 , PL2D, and PDL1 . In this case, we have ρχ < ρ∗χ, except for ρU = ρ∗U .

For N < Nt1 , we have Qs < Qc, and ρχ < ρ∗χ, for all χ, and thus the interfaces at all dividing

points represent normal wave patterns, which are associated with Eqs. (11)-(12). Accordingly, the
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constant flow Qs together with the densities ρχ in the four sections is uniquely determined by∑
χ

|χ|ρχ = N, Qe(ρχ) = Qs, χ = L1, U, L2, D. (25)

For N > Nt1 , we have the same flow rate Qs = Qc and other density values as in the case of

N = Nt1 , except for a “blow-up” upstream from PL1U , which is due to the capacity drop Qe(ρ
∗
U ) =

Qc < Qe(ρ
∗
L) (see Eq. (23) and Fig. 2(b)) at this interface. According to the discussion in Section

3.1, this suggests that PL1U represent the one and only bottleneck on the whole road with respect to

the discussed solution. In this case, L1 is divided into two intervals L11 and L12, and their lengths

together with the dividing point are determined by N through the following equation:

N =
∑
χ

|χ|ρχ, χ = L11, L12, U, L2, D. (26)

In this case, the traffic is downstream capacitated at PL1U , and PL11L12 represents the position Ps of

a stationary shock; the threshold value of N is computed by

Nt2 =
∑
χ

|χ|ρχ, χ = L1, U, L2, D, (27)

when Ps coincides with PDL1 .

As N continues to increase, the position Ps of the stationary shock moves upstream until it

reaches the joint PUL2 , which is between the up-slope and level road 2. In this process, a joint comes

to represent a congested wave pattern if its position is downstream from Ps. We have the threshold

value

Nt3 =
∑
χ

|χ|ρχ, χ = L1, U, L2, D, (28)

when Ps coincides with PL2D, and the threshold value

Nt4 =
∑
χ

|χ|ρχ, χ = L1, U, L2, D, (29)

when Ps coincides with PUL2 . The solution ρ(x) together with the position Ps of the stationary

shock for N between Nti and Nti+1 (i = 2, 3) can be determined similarly to Eq. (26).

For N > Nt4 , the constant flow Qs cannot reach the capacity Qc of the ring road. As N increases,

Qs begins to decrease until Qs = 0, when the whole road becomes completely blocked. With this

development, Qs together with ρχ in the four sections is determined also by Eq. (25), except that

each joint between two adjacent road sections represents a congested wave pattern.
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Fig. 3 (a) Steady-state flow rate in relation to the total number of vehicles: Qs = Qs(N); (b) wave patterns

corresponding to the cases of N < Nt1 , Nt1 < N < Nt2 , Nt2 < N < Nt3 , Nt3 < N < Nt4 , and N > Nt4 , from the top

to bottom, respectively, where “↗ ”, “ ↑ ”, and “ ↘” denote that the directions of characteristics are forward

(Q′
e(ρ) > 0), stationary (Q′

e(ρ) = 0), and backward (Q′
e(ρ) < 0).

The function Qs = Qs(N) is shown in Fig. 3(a). Corresponding to all discussed cases, the wave

patterns at all joints together with the characteristic speeds dx/dt ≡ Q′
e(ρ) in all sections are shown

in Fig. 3(b).

4 Numerical simulation

The semi-discrete model of (1)-(2) is used for numerical simulation. We casually set the following

initial distribution:

s0 =
|R|
N

, xm(0) = ms0, vm(0) = ue(s0), m = 1, · · · , N, (30)

and define sN (t) = (x1(t) + |R| − xN (t))/∆M in Eq. (2), where the length of the ring road |R| =

6750m. In the simulation, the position that is 2700 meters downstream from the joint PL1U is taken

as the origin. Moreover, the length of a road section is scaled by l = 4.5m and the density is scaled

by ρjam = 1/l. As a consequence, the coordinates of the joints PL1U , PUL2 , PL2D, and PDL1 are 600,

750, 1050, and 1200, respectively.

Because ue(s0) in Eq. (30) depends on the slope β, the vehicular velocities in different sections of

road are not equal. As a consequence, the headway cannot remain constant as the traffic conditions

evolve. Then, given the total number N of vehicles on the ring road, the simulation is designed

to test whether the initial distribution of Eq. (30) converges to the corresponding steady-state

solution. Because the simulation involves a stiff relaxation with small τ , a semi-implicit scheme for

time discretization of (1)-(2) is adopted,

x
(n+1)
m − x

(n)
m

∆t
= u(n)m ,

u
(n+1)
m + p(s

(n+1)
m )− u

(n)
m − p(s

(n)
m )

∆t
=

ue(s
(n)
m )− u

(n+1)
m

τ
, (31)

where s
(n)
m = x

(n)
m+1 − x

(n)
m .
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The convergence or divergence is actually associated with the stability or instability of the dis-

cussed steady-state solution, for which the linear stability condition of (12) for the involved equi-

librium states is referred to for comparison. However, we should note that not all lengths of these

equilibrium states are adequate to apply Eq. (12) and that the coupling effect between two adjacent

equilibrium states is neglected. Moreover, the perturbation arising from (30) to the corresponding

steady-state solution can be hardly regarded as “small”. These factors should give rise to considerable

errors in the comparison.

Table 1 Comparison between equilibrium values of the steady-state solution and simulated mean values

of the semi-discrete model on the divided sections. The initial distribution of Eq. (30) always converges to

the steady-state solution for sufficiently small relaxation times (τ = 0.03s), whereas it may diverge from the

steady-state solution for large relaxation times (τ = 0.3s), which bring about unstable equilibrium states of

the solution.

analytical equilibrium values simulated with τ = 0.03s simulated with τ = 0.3s

N L1 U L2 D L1 U L2 D L1 U L2 D

250 .1610 .2228 .1610 .1557 .1633 .2000 .1633 .1600 .1633 .2000 .1633 .1600

330 .1644 .2080 .1644 .1592 .1648 .2133 .1633 .1600 .1670 .2000 .1633 .1600

.3329 .3326 .3348

420 .3329 .2080 .1644 .2297 .3322 .2067 .1667 .2333 .3333 .2000 .1778 .2133

.3329 .3333 .3333

550 .3906 .2749 .3906 .2667 .3911 .2733 .3900 .2667 .4111 .2667 .3433 .2467

620 .4418 .3061 .4418 .2930 .4400 .3067 .4433 .3000 .5089 .2133 .3267 .2133

675 .4824 .3285 .4824 .3124 .4833 .3267 .4767 .3200 .4833 .3267 .4800 .3133

We choose ∆M = 1 to implement a realistic car-following simulation, in which case particle m

represents a vehicle and sm(t) is the headway between vehicles m and m+ 1. Even if ∆M is not so

small, we show that the convergence for τ is sufficiently small to ensure the stability condition of (12)

for all s0. Table 1 shows sets of simulated mean density values for comparison with the equilibrium

density values of the corresponding steady-state solution discussed in Section 3.1. The simulation

results are also shown in Fig. 4, by which we clearly observe the convergence. In this case, the

semi-discrete model together with its full discrete form of (31) works similarly to a relaxation scheme

for solving the LWR model of (13) (see [41–43] for detailed discussion of the relaxation scheme).

However, it is more physically significant to deal with unstable traffic flow in the ring road by

taking a much larger relaxation time, by which Eq. (12) suggests a narrower region of s0 for the

stability of the involved equilibrium states. We take τ = 0.3s, which is more realistic when compared

with the values that are widely used for the car-following model in the literature. With the same

values of N , the simulated mean values are also given in Table 1, and the simulation results are also
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shown in Fig. 4 to observe the convergence or divergence.
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(d) N = 550 (e) N = 620 (f) N = 675

Fig. 4 Density distributions for different total numbers N of vehicles at t = 1500s, which are evolved from the initial

distribution of Eq. (30). For a sufficiently small relaxation time τ = 0.03s, the traffic is generally quite stable (solid

blue line). For a much larger and more realistic relaxation time τ = 0.3s (dotted black line), the traffic is stable for N

that is small or large but unstable for intermediate values of N .

Table 2 Changes in solution properties arising from changes in N . The second column shows the monotone

change of Qs = Qs(N), where the threshold values Nt1 = 253, Nt2 = 404, Nt3 = 415, and Nt4 = 466 are

determined by Eqs. (21) and (23)-(26) (also compare with Fig. 3). Other columns show the stability (S) or

instability (I) of the involved equilibrium states by using Eq. (29) with τ = 0.3s.

N Qs L1 U L2 D

[0, 253] ↗ S S S S

(253, 404) = Qc (S, I) S S S

[404, 415) = Qc I S S (S, I)

[415, 466) = Qc I S (S, I) I

[466, 478] ↘ I S I I

(478, 579) ↘ I I I I

[579, 637) ↘ S I S I

[637, 657) ↘ S S S I

[657, 1500] ↘ S S S S

All involved equilibrium states and their stability (for τ = 0.3s) depend on the total number

N of vehicles on the ring road, which is again taken as a characteristic parameter, and of which

the threshold values for changes in stability are combined with those in Eqs. (24) and (27)-(29) to
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further classify the solution (see also Fig. 3). Table 2 indicates the solution properties, especially

the stability (S) or instability (I) of the equilibrium states with respect to the semi-discrete model,

which is according to Eq. (12).

Table 2 agrees with Fig. 4 except for some inconsistency in the stability of the equilibrium

states of the semi-discrete model, which corresponds to Fig. 4(e). However, both Table 2 and

Fig. 4 indicate a similar tendency. That is, the whole solution is quite stable and convergent to

the steady-state solution for small or large N ; the occurrence of instability becomes frequent and

intensive for intermediate values of N . This tendency is similar to (but is more complex than)

that for a homogeneous, level ring road, which was indicated by both theoretical and experimental

studies [27–30,44].

Most oscillations in Figs. 4(b)-(e) represent stop-and-go waves in traffic. Among these, the

waves in Figs. 4(b)-(c) demonstrate propagations only within one or more road sections, whereas we

observe steady-state traffic flow in other road sections through comparison with the simulated results

for τ = 0.03s. In contrast, the waves in Figs. 4(d)-(e) propagate throughout the ring road, in which

case no steady states are observed locally. However, we see some regularity in the backward moving

stop-and-go waves, which are somewhat similar to (but not as regular as) those traveling waves that

were studied under homogeneous ring road conditions [26–29,32]. Fig. 5 shows the evolution process

for N = 550, which corresponds to Fig. 4(d).

Fig. 5 Evolution of the initial distribution of Eq. (30), with N = 550, and 10000 time steps (for t ≤ 1500s).

Stop-and-go waves are observed moving backward throughout the ring road.

5 Conclusions

We thoroughly investigated the steady-state solution on an inhomogeneous ring road using a semi-

discrete model and uniquely determined the steady-state solution according to the analysis of the

wave pattern at a dividing point between two equilibria. Moreover, the stability of the solution was
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related to that of the involved equilibria.

We found that both the wave types and the stability of the steady-state solution depend on the

total number N of vehicles on the ring road and that the simulation results agree with the analysis

in general. For the case with a realistic relaxation time τ = 0.3s, a casually distributed traffic state

(of Eq. (30)) can stably evolve into the corresponding steady-state flow for light or heavy traffic

with small or large number N of vehicles but is liable to generate stop-and-go waves for congested

traffic with intermediate values of N . This tendency is similar to that found on a homogeneous, level

ring road, and the indicated phenomena are physically significant for the better understanding and

management of traffic flow on an inhomogeneous road in general. However, at least two issues are

left for future study.

1. More efficient tools are required for stability analysis of the discussed steady-state solution

due to the inadequate lengths and the neglect of interaction between the involved equilibrium

states in the current analysis.

2. Multi-lane traffic should be taken into account to present more realistic scenarios. Under

the framework of the present paper, the traffic flow in each lane would be described separately

except for the interaction between two adjacent lanes. In this case, formulation of a lane-change

maneuver should be physically sound (e.g., to reflect cooperation and defection as was done

in [6] using the BML model [8]). However, assignment of traffic flow (the Riemann solution) at

a link between two or more sections of road would pose a difficult problem for such modeling

(e.g., see the discussion in [45]).
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