13 research outputs found

    New approaches to Tay-Sachs disease therapy

    Get PDF
    Copyright © 2018 Solovyeva, Shaimardanova, Chulpanova, Kitaeva, Chakrabarti and Rizvanov. Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation

    Detection of rifampicin and izoniazid resistance in Mycobacterium tuberculosis strains from Samara Region (Central Russia)

    Get PDF
    Recently high rates of tuberculosis incidence and prevalence are observed in civilian and prisons sectors in Russia. One of the main reasons for high morbidity levels and ineffectiveness of treatment is wide spreading of drug resistant Mycobacterium tuberculosis strains, but accurate and comprehensive information on levels of drug resistance among strains circulating in Central Russia is unavailable. Rifampicin and izoniazid resistance detection in TB isolates from Samara (Central Russia) civilian and prison TB hospitals and dispensaries in 2000–2002 by revealing mutations in rpoB, katG and inhA genes using Macroarray technique. Methods: A total of 342 M. tuberculosis isolates were tested using Macroarray method. It is based on multiplex amplification of rpoB, katG and inhA genes fragments (with three pairs of biotin labeled primers) following by dothybridization with normal and mutant oligonucleotide probes (fragments of rpoB, katG and inhA genes in which mutations occur) immobilized on nylon membrane strips. Mycobacterial DNA was extracted by heating of cell suspensions following by chloroform extraction. Streptavidin-alkaline phosphatase color development system was used for visualization of results

    New approaches to Tay-Sachs disease therapy

    No full text
    Copyright © 2018 Solovyeva, Shaimardanova, Chulpanova, Kitaeva, Chakrabarti and Rizvanov. Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation

    In Vitro Angiogenic Properties of Plasmid DNA Encoding SDF-1α and VEGF165 Genes

    No full text
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. The stromal-derived factor-1 alpha (SDF-1α) and vascular endothelial growth factor (VEGF) play an important role in angiogenesis and exert a significant trophic function. SDF-1α is a chemoattractant for endothelial progenitor cells derived from bone marrow and promotes new blood vessel formation. VEGF regulates all types of vascular growth, stimulates angiogenesis, and is involved in the induction of lymphangiogenesis. The possibility of using these growth factors for regenerative medicine is currently under investigation. The angiogenic potential of a pBud-SDF-1α-VEGF165 bicistronic plasmid construct which simultaneously encodes VEGF165 and SDF-1α genes cDNA was evaluated in this study. The conditioned medium collected from HEK293T cells transfected with the pBud-SDF-1α-VEGF165 plasmid was shown to stimulate the formation of capillary-like structures by human umbilical vein-derived endothelial cells (HUVEC) on Matrigel and to increase the proliferative activity of these cells in vitro. Thus, the pBud-SDF-1α-VEGF165 plasmid exhibits angiogenic properties in cell cultures in vitro. As interest in the development of non-viral techniques for regenerative medicine increases, this plasmid which simultaneously expresses VEGF165 and SDF-1α may provide a platform for advanced methods of stimulating therapeutic angiogenesis

    In Vitro Angiogenic Properties of Plasmid DNA Encoding SDF-1α and VEGF165 Genes

    No full text
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. The stromal-derived factor-1 alpha (SDF-1α) and vascular endothelial growth factor (VEGF) play an important role in angiogenesis and exert a significant trophic function. SDF-1α is a chemoattractant for endothelial progenitor cells derived from bone marrow and promotes new blood vessel formation. VEGF regulates all types of vascular growth, stimulates angiogenesis, and is involved in the induction of lymphangiogenesis. The possibility of using these growth factors for regenerative medicine is currently under investigation. The angiogenic potential of a pBud-SDF-1α-VEGF165 bicistronic plasmid construct which simultaneously encodes VEGF165 and SDF-1α genes cDNA was evaluated in this study. The conditioned medium collected from HEK293T cells transfected with the pBud-SDF-1α-VEGF165 plasmid was shown to stimulate the formation of capillary-like structures by human umbilical vein-derived endothelial cells (HUVEC) on Matrigel and to increase the proliferative activity of these cells in vitro. Thus, the pBud-SDF-1α-VEGF165 plasmid exhibits angiogenic properties in cell cultures in vitro. As interest in the development of non-viral techniques for regenerative medicine increases, this plasmid which simultaneously expresses VEGF165 and SDF-1α may provide a platform for advanced methods of stimulating therapeutic angiogenesis

    Serum cytokine profile, beta-hexosaminidase a enzymatic activity and gm<inf>2</inf> ganglioside levels in the plasma of a tay-sachs disease patient after cord blood cell transplantation and curcumin administration: A case report

    No full text
    Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a β hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient’s serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient’s cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient’s serum and in an improvement in the patient’s neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient’s plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient’s condition

    Inflammatory Bowel Disease-Associated Changes in the Gut: Focus on Kazan Patients

    No full text
    Background: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). Methods: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. Results: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. Conclusions: Our analyses highlighted how IBD-related dysbiotic microbiota - which are generally mainly linked to SCFA imbalance - may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development
    corecore