31 research outputs found

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    Korea

    No full text
    Unsupervised connectivity-based thresholding segmentatio

    Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle

    Get PDF
    We show that calsequestrin, the main Ca 2+ storing protein of muscle, is polymerized inside the sarcoplasmic reticulum (SR) and its mobility increases greatly upon SR depletion, indicating depolymerization. Deep depletion causes massive calsequestrin migration and radical SR remodeling, often accompanied by a surge in intra-SR free Ca 2+ . The changes in calsequestrin polymerization observed in aqueous solutions therefore also occur in vivo. These changes help explain some uniquely advantageous properties of the SR as a source of calcium for contractile activation. The results support untested hypotheses about additional calsequestrin roles in the control of channel gating and facilitation of calcium flux. They also provide insights on the consequences of calsequestrin mutations for functional competence and structural stability of skeletal and cardiac muscle. Calsequestrin, the only known protein with cyclical storage and supply of calcium as main role, is proposed to have other functions, which remain unproven. Voluntary movement and the heart beat require this calcium flow to be massive and fast. How does calsequestrin do it? To bind large amounts of calcium in vitro, calsequestrin must polymerize and then depolymerize to release it. Does this rule apply inside the sarcoplasmic reticulum (SR) of a working cell? We answered using fluorescently tagged calsequestrin expressed in muscles of mice. By FRAP and imaging we monitored mobility of calsequestrin as [Ca 2+ ] in the SR--measured with a calsequestrin-fused biosensor--was lowered. We found that calsequestrin is polymerized within the SR at rest and that it depolymerized as [Ca 2+ ] went down: fully when calcium depletion was maximal (a condition achieved with an SR calcium channel opening drug) and partially when depletion was limited (a condition imposed by fatiguing stimulation, long-lasting depolarization, or low drug concentrations). With fluorescence and electron microscopic imaging we demonstrated massive movements of calsequestrin accompanied by drastic morphological SR changes in fully depleted cells. When cells were partially depleted no remodeling was found. The present results support the proposed role of calsequestrin in termination of calcium release by conformationally inducing closure of SR channels. A channel closing switch operated by calsequestrin depolymerization will limit depletion, thereby preventing full disassembly of the polymeric calsequestrin network and catastrophic structural changes in the SR

    Structure of limonene synthase, a simple model for terpenoid cyclase catalysis

    No full text
    The crystal structure of (4 S )-limonene synthase from Mentha spic ata , a metal ion-dependent monoterpene cyclase that catalyzes the coupled isomerization and cyclization of geranyl diphosphate, is reported at 2.7-Å; resolution in two forms liganded to the substrate and intermediate analogs, 2-fluorogeranyl diphosphate and 2-fluorolinalyl diphosphate, respectively. The implications of these findings are described for domain interactions in the homodimer and for changes in diphosphate–metal ion coordination and substrate binding conformation in the course of the multistep reaction

    Cultural values and volunteering: a cross-cultural comparison of students' motivation to volunteer in 13 countries

    No full text
    Voluntary participation is connected to cultural, political, religious and social contexts. Social and societal factors can provide opportunities, expectations and requirements for voluntary activity, as well as influence the values and norms promoting this. These contexts are especially central in the case of voluntary participation among students as they are often responding to the societal demands for building a career and qualifying for future assignments and/or government requirements for completing community service. This article questions how cultural values affect attitudes towards volunteerism, using data from an empirical research project on student volunteering activity in 13 countries in NorthAmerica, Europe, the Middle East, and the Asia Pacific region. The findings indicate that there are differences in motivation between countries which represent different cultural values. This article sets these findings in context by comparing structural and cultural factors which may influence volunteerism within each country
    corecore