12 research outputs found

    Spatiotemporal Trend Analysis of Temperature and Rainfall over Ziway Lake Basin, Ethiopia

    No full text
    Rainfall and temperature trends detection is vital for water resources management and decision support systems in agro-hydrology. This study assessed the historical (1983–2005) and future (2026–2100) rainfall, maximum temperature (Tmax), and minimum temperature (Tmin) trends of the Ziway Lake Basin (Ethiopia). The daily observed rainfall and temperature data at eleven stations were obtained from the National Meteorological Agency (NMA) of Ethiopia, while simulated historical and future climate data were obtained from the Coupled Model Intercomparison Project 5 (CMIP5) datasets under Representative Concentration Pathways (RCP) of 4.5 and 8.5. The CMIP5 datasets were statistically downscaled by using the climate model data for hydrologic modeling (CMhyd) tool and bias corrected using the distribution mapping method available in the CMhyd tool. The performance of simulated rainfall, Tmax, and Tmin of the CMIP5 models were statistically evaluated using observation datasets at eleven stations. The results showed that the selected CMIP5 models can reasonably simulate the monthly rainfall, Tmax, and Tmin at the majority of the stations. Modified Mann–Kendall trend test were applied to estimate the trends of annual rainfall, Tmax, and Tmin in the historical and future periods. We found that rainfall experienced no clear trends, while Tmax, and Tmin showed consistently significant increasing trends under both RCP 4.5 and 8.5 scenarios. However, the warming is expected to be greater under RCP 8.5 than RCP 4.5 by the end of the 21st century, resulting in an increasing trend of Tmax and Tmin at all stations. The greatest warming occurred in the central part of the basin, with statistically significant increases largely seen by the end of the 21st century, which is expected to exacerbate the evapotranspiration demand of the area that could negatively affect the freshwater availability within the basin. This study increases our understanding of historic trends and projected future change effects on rainfall- and evapotranspiration-related climate variables, which can be used to inform adaptive water resource management strategies

    Response of Winter Wheat Production to Climate Change in Ziway Lake Basin

    No full text
    The crop production and limited freshwater resources in the Central Rift Valley (CRV) Lake Basin of Ethiopia have been facing pressure from warmer and drier climates. Thus, irrigation with the goal of increasing water use efficiency and the productivity of rainfed agriculture is vital to address climate effects, water scarcity, and food security. This study is aimed at assessing the sustainability of winter wheat production under climate change, and irrigation as an adaptation measure to improve yield, crop water productivity (CWP), and irrigation water productivity (IWP) in the CRV of Ethiopia. AquaCrop is applied to evaluate the effects of climate change and simulate irrigation as an adaptation measure. The analysis covers the baseline (1981–2020) and future (2026–2095) periods with each period categorized into three rainfall years (wet, normal, and dry). The future period is described using two representatives’ concentration pathways (RCP4.5 and PCP8.5) scenarios. The results under rainfed and future climate conditions show that the winter wheat yield and CWP are projected to be lowered as compared to the baseline period. Most importantly, a significant reduction in wheat yield and CWP is noticed during the dry years (−60% and −80%) compared to the wet years (−30% and −51%) and normal years (−18% and −30%), respectively. As compared to rainfed agriculture, irrigation significantly reduces the risk of wheat yield decline and improves the CWP. Irrigation is also able to improve the CWP of rainfed wheat production ranging from 0.98–1.4 kg/m3 to 1.48–1.56 kg/m3. A projected CWP improvement of 1.1–1.32 kg/m3 under irrigation is possible from 0.87–1.1 kg/m3 under rainfed conditions. The study concludes that optimizing irrigation as a climate-change-adapting strategy in the CRV has a more pronounced positive impact to the rainfed production system, especially for the dry and normal years

    Grey water footprint reduction in irrigated crop production: effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy

    No full text
    Grey water footprint (WF) reduction is essential given the increasing water pollution associated with food production and the limited assimilation capacity of fresh water. Fertilizer application can contribute significantly to the grey WF as a result of nutrient leaching to groundwater and runoff to streams. The objective of this study is to explore the effect of the nitrogen application rate (from 25 to 300 kg N ha−1), nitrogen form (inorganic N or manure N), tillage practice (conventional or no-tillage) and irrigation strategy (full or deficit irrigation) on the nitrogen load to groundwater and surface water, crop yield and the N-related grey water footprint of crop production by a systematic model-based assessment. As a case study, we consider irrigated maize grown in Spain on loam soil in a semi-arid environment, whereby we simulate the 20-year period 1993–2012. The water and nitrogen balances of the soil and plant growth at the field scale were simulated with the Agricultural Policy Environmental eXtender (APEX) model. As a reference management package, we assume the use of inorganic N (nitrate), conventional tillage and full irrigation. For this reference, the grey WF at a usual N application rate of 300 kg N ha−1 (with crop yield of 11.1 t ha−1) is 1100 m3 t−1, which can be reduced by 91 % towards 95 m3 t−1 when the N application rate is reduced to 50 kg N ha−1 (with a yield of 3.7 t ha−1). The grey WF can be further reduced to 75 m3 t−1 by shifting the management package to manure N and deficit irrigation (with crop yield of 3.5 t ha−1). Although water pollution can thus be reduced dramatically, this comes together with a great yield reduction, and a much lower water productivity (larger green plus blue WF) as well. The overall (green, blue and grey) WF per tonne is found to be minimal at an N application rate of 150 kg N ha−1, with manure, no-tillage and deficit irrigation (with crop yield of 9.3 t ha−1). The paper shows that there is a trade-off between grey WF and crop yield, as well as a trade-off between reducing water pollution (grey WF) and water consumption (green and blue WF). Applying manure instead of inorganic N and deficit instead of full irrigation are measures that reduce both water pollution and water consumption with a 16 % loss in yield

    Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    No full text
    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season) or to a certain WF benchmark (expressed in m3  t−1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost

    Performance evaluation and comparison of satellite-derived rainfall datasets over the Ziway lake basin, Ethiopia

    No full text
    Consistent time series rainfall datasets are important in performing climate trend analyses and agro-hydrological modeling. However, temporally consistent ground-based and long-term observed rainfall data are usually lacking for such analyses, especially in mountainous and developing countries. In the absence of such data, satellite-derived rainfall products, such as the Climate Hazard Infrared Precipitations with Stations (CHIRPS) and Global Precipitation Measurement Integrated Multi-SatellitE Retrieval (GPM-IMERG) can be used. However, as their performance varies from region to region, it is of interest to evaluate the accuracy of satellite-derived rainfall products at the basin scale using ground-based observations. In this study, we evaluated and demonstrated the performance of the three-run GPM-IMERG (early, late, and final) and CHIRPS rainfall datasets against the ground-based observations over the Ziway Lake Basin in Ethiopia. We performed the analysis at monthly and seasonal time scales from 2000 to 2014, using multiple statistical evaluation criteria and graphical methods. While both GPM-IMERG and CHIRPS showed good agreement with ground-observed rainfall data at monthly and seasonal time scales, the CHIRPS products slightly outperformed the GPM-IMERG products. The study thus concluded that CHIRPS or GPM-IMERG rainfall data can be used as a surrogate in the absence of ground-based observed rainfall data for monthly or seasonal agro-hydrological studies

    A framework for irrigation performance assessment using WaPOR data: The case of a sugarcane estate in Mozambique

    No full text
    The growing competition for finite land and water resources and the need to feed an ever-growing population require new techniques to monitor the performance of irrigation schemes and improve land and water productivity. Datasets from FAO's portal to monitor Water Productivity through Open access Remotely sensed derived data (WaPOR) are increasingly applied as a cost-effective means to support irrigation performance assessment and identify possible pathways for improvement. This study presents a framework that applies WaPOR data to assess irrigation performance indicators, including uniformity, equity, adequacy, and land and water productivity differentiated by irrigation method (furrow, sprinkler, and centre pivot) at the Xinavane sugarcane estate, Mozambique. The WaPOR data on water, land, and climate are in near-real time and spatially distributed, with the finest spatial resolution in the area of 100 m. The WaPOR data were first validated agronomically by examining the biomass response to water, and then the data were used to systematically analyse seasonal indicators for the period 2015 to 2018 on ∼8000 ha. The WaPOR-based yield estimates were found to be comparable to the estate-measured yields with ±20 % difference, a root mean square error of 19±2.5 t ha−1 and a mean absolute error of 15±1.6 t ha−1. A climate normalization factor that enables the spatial and temporal comparison of performance indicators are applied. The assessment highlights that in Xinavane no single irrigation method performs the best across all performance indicators. Centre pivot compared to sprinkler and furrow irrigation shows higher adequacy, equity, and land productivity but lower water productivity. The three irrigation methods have excellent uniformity (∼94 %) in the four seasons and acceptable adequacy for most periods of the season except in 2016, when a drought was observed. While this study is done for sugarcane in one irrigation scheme, the approach can be broadened to compare other crops across fields or irrigation schemes across Africa with diverse management units in the different agroclimatic zones within FAO WaPOR coverage. We conclude that the framework is useful for assessing irrigation performance using the WaPOR dataset

    Evaluating the performances of gridded satellite/reanalysis products in representing the rainfall climatology of Ethiopia

    No full text
    This study evaluated performances of the Climate Hazard Group Infrared Precipitation with stations version 2.0 (CHIRPS v2.0) and Multi-Source Weighted-Ensemble Precipitation version 2.8 (MSWEP v2.8) products against observed data. Rainfall climatology was simulated for different agro-ecological zones (AEZs) of Ethiopia during 1991–2020 at different temporal scales. Performance evaluations were made using continuous and statistical performance measures as well as Probability Density Function (PDF). CHIRPS v2.0 for estimating monthly, seasonal, and annual rainfall totals, and MSWEP v2.8 for daily rainfall have shown better performance over all AEZs. The two products display comparable performance for detecting daily rainfall occurrences over alpine AEZ, but MSWEP v2.8 is superior in the rest four AEZs. CHIRPS v2.0 outperforms MSWEP v2.8 for detecting most of the daily rainfall intensity classes over all AEZs. The findings will play a noteworthy role to improve the quality of hydro-climate studies in Ethiopia

    Balancing indicators for sustainable intensification of crop production at field and river basin levels

    No full text
    Adequate tools for evaluating sustainable intensification (SI) of crop production for agro-hydrological system are not readily available. Building on existing concepts, we propose a framework for evaluating SI at the field and river basin levels. The framework serves as a means to assess and visualise SI indicator values, including yield, water-use efficiency and nitrogen-use efficiency (NUE), alongside water and nitrogen surpluses and their effects on water quantity and quality. To demonstrate the SI assessment framework, we used empirical data for both the field level (the Static Fertilization Experiment at Bad Lauchstädt) and the river basin level (the Selke basin, 463 km2) in central Germany. Crop yield and resource use efficiency varied considerably from 1980 to 2014, but without clear trends. NUE frequently fell below the desirable range (80 kg N ha−1). For the catchment as a whole, the average nitrate-N concentration (3.6 mg L−1) was slightly higher than the threshold of 2.5 mg L−1 nitrate-N in surface water. However, weather and climate-related patterns, due to their effects on transport capacity and dilution, influenced water quantity and quality indicators more than agronomic practices. To achieve SI of crop production in the Selke basin, irrigation and soil moisture management are required to reduce yield variability and reduce N surpluses at field level. In addition, optimum application of fertiliser and manure could help to reduce the nitrate-N concentration below the set water quality standards in the Selke basin. In this way, there is scope for increase in yields and resource use efficiencies, and thus potential reduction of environmental impacts at basin level. We conclude that the framework is useful for assessing sustainable production, by simultaneously considering objectives related to crop production, resource-use efficiency and environmental quality, at both field and river basin levels

    Local and regional climate trends and variabilities in Ethiopia: implications for climate change adaptations

    No full text
    Ethiopia is experiencing considerable impact of climate change and variability in the last five decades. Analyzing climate trends and variability is essential to develop effective adaptation strategies, particularly for countries vulnerable to climate change. This study analyzed trends and variabilities of climate (rainfall, maximum temperature (Tmax), and minimum temperature (Tmin)) at local and regional scales in Ethiopia. The local analysis was carried out considering each meteorological station, while the regional analyses were based on agro-ecological zones (AEZs). This study used observations from 47 rainfall and 37 temperature stations obtained from the Ethiopian Meteorological Institute (EMI) for the period of 1986 to 2020. The Modified Mann-Kendall (MMK) trend test and Theil Sen's slope estimator were used to analyze the trends and magnitudes of change, respectively, in rainfall as well as temperature. The coefficient of variation (CV) and standardized anomaly index (SAI) were also employed to evaluate rainfall and temperature variabilities. The local level analysis revealed that Bega (dry season), Kiremt (main rainy season), and annual rainfall showed increasing trend, albeit no significant, in most stations, but the rainfall in Belg (small rainy) season showed a non-significant decreasing trend. The regional levels analysis also indicated an increasing trend of Bega, Kiremt, and annual rainfall in most AEZs, while Belg rainfall showed a decreasing trend in the greater number of AEZs. The result of both local and regional levels of analysis discerned a spatially and temporally more homogeneous warming trend. Both Tmax and Tmin revealed an increasing trend in annual and seasonal scales at most meteorological stations. Likewise, an increase was recorded for mean Tmax and Tmin in entire/most AEZs. The observed trends and variabilities of rainfall and temperature have several implications for climate change adaptations. For example, the decrease in Belg rainfall in most AEZs would have a negative impact on areas that heavily depend on Belg season's rainfall for crop production. Some climate adaptation options include identifying short maturing crop varieties, soil moisture conservation, and supplemental irrigation of crops using harvested water during the main rainy season. Conversely, since the first three months of Bega season (October to December) are crop harvest season in most parts of Ethiopia, the increase in Bega rainfall would increase crop harvest loss, and hence, early planting date and identifying short maturing crops during the main rainy season are some climate adaptation strategies. Because of the increase in temperature, water demand for irrigation during Bega season will increase due to increased evapotranspiration. On the other hand, the increase in Kiremt rainfall can be harvested and used for supplemental irrigation during Bega as well as the small rainy season, particularly for early planting. In view of these findings, it is imperative to develop and implement effective climate-smart agricultural strategies specific to each agro-ecological zone (AEZ) to adapt to rainfall and temperature changes and variabilities
    corecore