2,254 research outputs found

    Feedback cooling of a cantilever's fundamental mode below 5 mK

    Full text link
    We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases

    Get PDF
    Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability

    Dynamical Properties of a Growing Surface on a Random Substrate

    Full text link
    The dynamics of the discrete Gaussian model for the surface of a crystal deposited on a disordered substrate is investigated by Monte Carlo simulations. The mobility of the growing surface was studied as a function of a small driving force FF and temperature TT. A continuous transition is found from high-temperature phase characterized by linear response to a low-temperature phase with nonlinear, temperature dependent response. In the simulated regime of driving force the numerical results are in general agreement with recent dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC

    MRI Shows More Severe Hippocampal Atrophy and Shape Deformation in Hippocampal Sclerosis Than in Alzheimer's Disease

    Get PDF
    While hippocampal atrophy is a key feature of both hippocampal sclerosis (HS) and Alzheimer's disease (AD), the pathology underlying this finding differs in these two conditions. In AD, atrophy is due primarily to loss of neurons and neuronal volume as a result of neurofibrillary tangle formation. While the etiology of HS is unknown, neuron loss in the hippocampus is severe to complete. We compared hippocampal volume and deformations from premortem MRI in 43 neuropathologically diagnosed cases of HS, AD, and normal controls (NC) selected from a longitudinal study of subcortical ischemic vascular disease (IVD Program Project). HS cases (n = 11) showed loss of neurons throughout the rostral-caudal extent of the hippocampus in one or both hemispheres. AD cases (n = 24) met NIA-Reagan criteria for high likelihood of AD. Normal control cases (n = 8) were cognitively intact and showed no significant AD or hippocampal pathology. The mean hippocampal volumes were significantly lower in HS versus AD groups (P < .001). Mean shape deformations in the CA1 and subiculum differed significantly between HS versus AD, HS versus NC, and AD versus NC (P < .0001). Additional study is needed to determine whether these differences will be meaningful for clinical diagnosis of individual cases

    Melting of the classical bilayer Wigner crystal: influence of the lattice symmetry

    Get PDF
    The melting transition of the five different lattices of a bilayer crystal is studied using the Monte-Carlo technique. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures, which is a consequence of the specific topology of the temperature induced defects. A new melting criterion is formulated which we show to be universal for bilayers as well as for single layer crystals.Comment: 4 pages, 5 figures (postscript files). Accepted in Physical Review Letter

    A Bias-Aware EnKF Estimator for Aerodynamic Flows

    Get PDF
    Ensemble methods can integrate measurement data and CFD-based models to estimate the state of fluid systems in a robust and cost-efficient way. However, discretization errors can render numerical solutions a biased representation of reality. Left unaccounted for, biased forecast and observation models can lead to poor estimator performance. In this work, we propose a low-rank representation for the bias whose dynamics is represented by a colorednoise process. System state and bias parameters are simultaneously corrected on-line with the Ensemble Kalman Filter (EnKF) algorithm. The proposed methodology is demonstrated to achieve a 70% error reduction for the problem of estimating the state of the two-dimensional low-Re flow past a flat plate at high angle of attack using an ensemble of coarse-mesh simulations and pressure measurements at the surface of the body, compared to a bias-blind estimator. Strategies to determine the bias statistics and to deal with nonlinear observation functions in the context of ensemble methods are discussed
    corecore