17 research outputs found

    The potential value of microRNA-4463 in the prognosis evaluation in hepatocellular carcinoma

    No full text
    The purpose of this study is to measure the expression of microRNA-4463 and microRNA-6087 between normal persons and patients with hepatocellular carcinoma (HCC), and to clarify the meaning of them in the prognosis evaluation in HCC. Forty-five samples from healthy people and patients, who had been diagnosed with hepatocellular carcinoma before any treatment, were collected to study respectively. Real-time PCR was used to detect the expression of miRNA-4463 and miRNA-6087 in the serum of control group and hepatocellular carcinoma patients. The expression of miR-4463 in the serum of HCC patients was significantly higher than that in control group (P  0.05). But there was a significant difference of different level of AFP in HCC (P < 0.05), and the difference between the group of AFP lower than 400 ug/l and the control group is statistically significant (P < 0.05). Besides, the survival time had showed a significant difference at the high and low expression levels (P < 0.05). But the expression level of miRNA-6087 was no difference in HCC and control group. The disorder of miRNA-4463 occurred in HCC, even the AFP level doesn't rises. What's more, patients who get the high level of miRNA-4463 seem to have a shorter survival time. And it contributes great to the prognostic evaluation. This is the first study to illustrate the potential significance of miRNA-4463 in the prognosis in HCC

    The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism

    No full text
    Hypoxia-inducible factor (HIF) is a main heterodimeric transcription factor that regulates the cellular adaptive response to hypoxia by stimulating the transcription of a series of hypoxia-inducible genes. HIF is frequently upregulated in solid tumors, and the overexpression of HIF can promote tumor progression or aggressiveness by blood vessel architecture and altering cellular metabolism. In this review, we focused on the pivotal role of HIF in tumor angiogenesis and energy metabolism. Furthermore, we also emphasized the possibility of HIF pathway as a potential therapeutic target in cancer

    Inflammation Induced by Lipopolysaccharide and Palmitic Acid Increases Cholesterol Accumulation via Enhancing Myeloid Differentiation Factor 88 Expression in HepG2 Cells

    No full text
    Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20μmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells

    Nano-petri-dish Array Assisted Glancing Angle Sputtering for Ag-NP Assembled Bi-nanoring Arrays as Effective SERS Substrates

    No full text
    Nano-petri-dish array assisted glancing angle Ag-sputtering was reported to synthesize Ag-nanoparticle (Ag-NP) assembled bi-nanoring arrays as surface-enhanced Raman scattering (SERS) substrates. By manipulating the sputtering-Ag duration, the gaps between the Ag-NPs in the bi-nanorings are tunable to acquire optimal electromagnetic field enhancement, and the ordered bi-nanoring arrays ensure excellent reproducibility for Raman measurement. Such as-fabricated Ag-NPs assembled nanoring arrays exhibit excellent SERS performance, not only 1 × 10<sup>–12</sup> M rhodamine 6G has been identified, but also polychlorinated biphenyls with a low concentration down to 1 × 10<sup>–9</sup> M has been recognized, showing great potential in the detection of trace organic pollutants in the environment
    corecore