38 research outputs found

    On contribution of horizontal and intra-layer convection to the formation of the Baltic Sea cold intermediate layer

    Get PDF
    Seasonal cascades down the coastal slopes and intra-layer convection are considered as the two additional mechanisms contributing to the Baltic Sea cold intermediate layer (CIL) formation along with conventional seasonal vertical mixing. Field measurements are presented, reporting for the first time the possibility of denser water formation and cascading from the Baltic Sea underwater slopes, which take place under fall and winter cooling conditions and deliver waters into intermediate layer of salinity stratified deep-sea area. The presence in spring within the CIL of water with temperature below that of maximum density (Tmd) and that at the local surface in winter time allows tracing its formation: it is argued that the source of the coldest waters of the Baltic CIL is early spring (March–April) cascading, arising due to heating of water before reaching the Tmd. Fast increase of the open water heat content during further spring heating indicates that horizontal exchange rather than direct solar heating is responsible for that. When the surface is covered with water, heated above the Tmd, the conditions within the CIL become favorable for intralayer convection due to the presence of waters of Tmd in intermediate layer, which can explain its well-known features – the observed increase of its salinity and deepening with time

    An integrated Pan-European perspective on coastal Lagoons management through a mosaic-DPSIR approach

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 19400, doi:10.1038/srep19400.A decision support framework for the management of lagoon ecosystems was tested using four European Lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Tyligulskyi Liman (Ukraine) and Vistula Lagoon (Poland/Russia). Our aim was to formulate integrated management recommendations for European lagoons. To achieve this we followed a DPSIR (Drivers-Pressures-State Change-Impacts-Responses) approach, with focus on integrating aspects of human wellbeing, welfare and ecosystem sustainability. The most important drivers in each lagoon were identified, based on information gathered from the lagoons’ stakeholders, complemented by scientific knowledge on each lagoon as seen from a land-sea perspective. The DPSIR cycles for each driver were combined into a mosaic-DPSIR conceptual model to examine the interdependency between the multiple and interacting uses of the lagoon. This framework emphasizes the common links, but also the specificities of responses to drivers and the ecosystem services provided. The information collected was used to formulate recommendations for the sustainable management of lagoons within a Pan-European context. Several common management recommendations were proposed, but specificities were also identified. The study synthesizes the present conditions for the management of lagoons, thus analysing and examining the activities that might be developed in different scenarios, scenarios which facilitate ecosystem protection without compromising future generations.This study was supported by the European Commission, under the 7th Framework Programme, through the collaborative research project LAGOONS (contract n° 283157); by European funds through COMPETE and by Portuguese funds through the national Foundation for Science and Technology – FCT (PEst-C/MAR/LA0017/2013). The post-Doc grant SFRH/BPD/41117/2007 (M Dolbeth) and the PhD grant SFRH/BD/79170/2011 (LP Sousa) supported by FCT are also acknowledged

    Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    Get PDF
    © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources

    Toward the Integrated Marine Debris Observing System

    Get PDF
    Plastics and other artiïŹcial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical ïŹ‚uxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS)thatisrequiredtoprovidelong-termmonitoringofthestateofthisanthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, ïŹ‚uorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users

    Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    No full text
    We study how a coastal obstruction (peninsula or coastal island) affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative) rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula) and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.Key words: Oceanography: general (limnology; numerical modeling) - Oceanography: physical (currents
    corecore