22 research outputs found

    Leukocyte capture and modulation of cell-mediated immunity during human sepsis: An ex vivo study

    Get PDF
    Introduction: Promising preclinical results have been obtained with blood purification therapies as adjuvant treatment for sepsis. However, the mechanisms by which these therapies exert beneficial effects remain unclear. Some investigators have suggested that removal of activated leukocytes from the circulation might help ameliorate remote organ injury. We designed an extracorporeal hemoadsorption device capable of capturing both cytokines and leukocytes in order to test the hypothesis that leukocyte capture would alter circulating cytokine profiles and influence immunological cell-cell interactions in whole blood taken from patients with sepsis.Methods: We performed a series of ex vivo studies in 21 patients with septic shock and 12 healthy volunteers. Blood circulated for four hours in closed loops with four specially designed miniaturized extracorporeal blood purification devices including two different hemoadsorption devices and a hemofilter in order to characterize leukocyte capture and to assess the effects of leukocyte removal on inflammation and immune function. Results: Hemoadsorption was selective for removal of activated neutrophils and monocytes. Capture of these cells led to local release of certain cytokines, especially IL-8, and resulted in complex cell-cell interactions involved in cellmediated immunity. Inhibition of cell adherence reversed the cytokine release and the effects on lymphocyte function. Conclusions: Monocyte and neutrophil capture using a sorbent polymer results in upregulation of IL-8 and modulation of cell-mediated immunity. Further studies are needed to understand better these cellular interactions in order to help design better blood purification therapies. © 2013 Rimmelé et al.; licensee BioMed Central Ltd

    Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model

    Get PDF
    Introduction: Prior work suggests that leukocyte trafficking is determined by local chemokine gradients between the nidus of infection and the plasma. We recently demonstrated that therapeutic apheresis can alter immune mediator concentrations in the plasma, protect against organ injury, and improve survival. Here we aimed to determine whether the removal of chemokines from the plasma by apheresis in experimental peritonitis changes chemokine gradients and subsequently enhances leukocyte localization into the infected compartment, and away from healthy tissues.Methods: In total, 76 male adult Sprague-Dawley rats weighing 400 g to 600 g were included in this study. Eighteen hours after inducing sepsis by cecal ligation and puncture, we randomized these rats to apheresis or sham treatment for 4 hours. Cytokines, chemokines, and leukocyte counts from blood, peritoneal cavity, and lung were measured. In a separate experiment, we labeled neutrophils from septic donor animals and injected them into either apheresis or sham-treated animals. All numeric data with normal distributions were compared with one-way analysis of variance, and numeric data not normally distributed were compared with the Mann-Whitney U test.Results: Apheresis significantly removed plasma cytokines and chemokines, increased peritoneal fluid-to-blood chemokine (C-X-C motif ligand 1, ligand 2, and C-C motif ligand 2) ratios, and decreased bronchoalveolar lavage fluid-to-blood chemokine ratios, resulting in enhanced leukocyte recruitment into the peritoneal cavity and improved bacterial clearance, but decreased recruitment into the lung. Apheresis also reduced myeloperoxidase activity and histologic injury in the lung, liver, and kidney. These Labeled donor neutrophils exhibited decreased localization in the lung when infused into apheresis-treated animals.Conclusions: Our results support the concept of chemokine gradient control of leukocyte trafficking and demonstrate the efficacy of apheresis to target this mechanism and reduce leukocyte infiltration into the lung. © 2014 Peng et al

    Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial)

    No full text
    Abstract Background The timing of initiation of renal replacement therapy (RRT) in severe acute kidney injury (AKI) remains controversial, with early initiation resulting in unnecessary therapy for some patients while expectant therapy may delay RRT for other patients. The furosemide stress test (FST) has been shown to predict the need for RRT and therefore could be used to exclude low-risk patients from enrollment in trials of RRT timing. We conducted this multicenter pilot study to determine whether FST could be used to screen patients at high risk for RRT and to determine the feasibility of incorporating FST into a trial of early initiation of RRT. Methods FST was performed using intravenous furosemide (1 mg/kg in furosemide-naive patients or 1.5 mg/kg in previous furosemide users). FST-nonresponsive patients (urine output less than 200 mL in 2 h) were then randomized to early (initiation within 6 h) or standard (initiation by urgent indication) RRT. Results FST was completed in all patients (100%). Only 6/44 (13.6%) FST-responsive patients ultimately received RRT while 47/60 (78.3%) nonresponders randomized to standard RRT either received RRT or died (P <  0.001). Among 118 FST-nonresponsive patients, 98.3% in the early RRT arm and 75% in the standard RRT arm received RRT. The adherence to the protocol was 94.8% and 100% in the early and standard RRT group, respectively. We observed no differences in 28-day mortality (62.1 versus 58.3%, P = 0.68), 7-day fluid balance, or RRT dependence at day 28. However, hypophosphatemia occurred more frequently in the early RRT arm (P = 0.002). Conclusion The furosemide stress test appears to be feasible and effective in identifying patients for randomization to different RRT initiation times. Our findings should guide implementation of large-scale randomized controlled trials for the timing of RRT initiation. Trial registration clinicaltrials.gov, NCT02730117. Registered 6 April 2016

    Comparing multilabel classification methods for provisional biopharmaceutics class prediction

    Get PDF
    The biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time. This paper compares two multilabel methods, binary relevance and classifier chain, for provisional BCS class prediction. Large data sets of permeability and solubility of drug and drug-like compounds were obtained from the literature and were used to build models using decision trees. The separate permeability and solubility models were validated, and a BCS validation set of 127 compounds where both permeability and solubility were known was used to compare the two aforementioned multilabel classification methods for provisional BCS class prediction. Overall, the results indicate that the classifier chain method, which takes into account label interactions, performed better compared to the binary relevance method. This work offers a comparison of multilabel methods and shows the potential of the classifier chain multilabel method for improved biological property predictions for use in drug discovery and development. © 2014 American Chemical Society
    corecore