237 research outputs found

    Reaching Approximate Byzantine Consensus in Partially-Connected Mobile Networks

    Get PDF
    We consider the problem of approximate consensus in mobile networks containing Byzantine nodes. We assume that each correct node can communicate only with its neighbors and has no knowledge of the global topology. As all nodes have moving ability, the topology is dynamic. The number of Byzantine nodes is bounded by f and known by all correct nodes. We first introduce an approximate Byzantine consensus protocol which is based on the linear iteration method. As nodes are allowed to collect information during several consecutive rounds, moving gives them the opportunity to gather more values. We propose a novel sufficient and necessary condition to guarantee the final convergence of the consensus protocol. The requirement expressed by our condition is not "universal": in each phase it affects only a single correct node. More precisely, at least one correct node among those that propose either the minimum or the maximum value which is present in the network, has to receive enough messages (quantity constraint) with either higher or lower values (quality constraint). Of course, nodes' motion should not prevent this requirement to be fulfilled. Our conclusion shows that the proposed condition can be satisfied if the total number of nodes is greater than 3f+1.Comment: No. RR-7985 (2012

    Reputation Propagation and Updating in Mobile Ad Hoc Networks with Byzantine Failures

    Get PDF
    International audienceIn a mobile ad hoc network we consider the problem of designing a reputation system that allows to update and to propagate the computed reputation scores while tolerating Byzantine failures. Each time a correct node uses directly a service, it can determine by itself the quality of service currently provided. This fresh and valid rating information is broadcast immediately to all its current neighbors. Then, while the mobile node moves, it can receive from other nodes other recommendations also related to the same service. Thus it updates continuously its own opinion. Meanwhile it continues to broadcast this updated information. The freshness and the validity of the received/sent information become questionable. We propose a protocol that allows a node to ignore a second hand information when this information is not fresh or not valid. In particular, fake values provided by Byzantine nodes are eliminated when they are not consistent with those gathered from correct nodes. When the quality of service stabilizes, the correct nodes are supposed to provide quite similar recommendations. In this case, we demonstrate that the proposed protocol ensures convergence to a range of possible reputation scores if a necessary condition is satisfied by the mobile nodes. Simulations are conducted in random mobility scenarios. The results show that our algorithm has a better performance than typical methods proposed in previous works

    WSGP: A Window-based Streaming Graph Partitioning Approach

    Get PDF
    International audienceGraph partitioning, a preliminary step of distributed graph processing, has been attracting increasing attention in the last decade. A high quality graph partitioning algorithm should facilitate graph processing by minimizing the communication overhead and maintaining the load balancing among distributed computing units. Offline partitioning algorithms usually require the knowledge of a complete graph,and therefore, are not adaptive to handle massive graph-structured data. On the contrary, streaming partitioning algorithms take edges or vertices as a stream and make partitioning decisions on the fly. However, the streaming manner faces dilemmas from time to time because of a lack of knowledge. Furthermore, an unmindful partitioning decision in such a dilemma could significantly decrease the partition quality. In this paper, we propose a novel window-based streaming graph partitioning algorithm (WSGP). WSGP leverages a greedy-based heuristic to perform edge partitioning. When facing a decision dilemma, WSGP utilizes a size-bounded window to buffer the edges. When the window is fully filled, an edge is poped and assigned to a partition. The assignment is decided by knowledge obtained from both the edges already settled and the ones still cached in the buffer window. Our experiments take into account various real-world benchmark graphs. The experimental results demonstrate that WSGP consistently has a smaller replication factor than the state-of-the-art algorithms by up to 23%, at a limited cost in terms of memory and comprehensive running time

    The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death

    Get PDF
    Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD

    Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis

    Get PDF
    The Tibetan Plateau is a prime example of a collisional orogen with widespread strike-slip faults whose age and tectonic significance remain controversial. We present new low-temperature thermochronometry to date periods of exhumation associated with Kunlun and Haiyuan faulting, two major strike-slip faults within the northeastern margin of Tibet. Apatite and zircon (U-Th)/He and apatite fission-track ages, which record exhumation from ~2 to 6 km crustal depths, provide minimum bounds on fault timing. Results from Kunlun samples show increased exhumation rates along the western fault segment at circa 12–8 Ma with a possible earlier phase of motion from ~30–20 Ma, along the central fault segment at circa 20–15 Ma, and along the eastern fault segment at circa 8–5 Ma. Combined with previous studies, our results suggest that motion along the Haiyuan fault may have occurred as early as ~15 Ma along the western/central fault segment before initiating at least by 10–8 Ma along the eastern fault tip. We relate an ~250 km wide zone of transpressional shear to synchronous Kunlun and Haiyuan fault motion and suggest that the present-day configuration of active faults along the northeastern margin of Tibet was likely established since middle Miocene time. We interpret the onset of transpression to relate to the progressive confinement of Tibet against rigid crustal blocks to the north and expansion of crustal thickening to the east during the later stages of orogen development

    Plant defense negates pathogen manipulation of vector behavior

    Get PDF
    1. Although many vector‐borne plant pathogens can alter vector behaviour to the pathogen\u27s benefit, how plants might counter such manipulation is unknown. 2. In the Tomato yellow leaf curl virus (‘TYLCV’)–Bemisia tabaci–tomato interaction, TYLCV‐mediated changes in Bemisia feeding improves viral uptake and transmission. We tested how jasmonic acid (‘JA’), a central regulator of plant antiherbivore defences, affected the ability of TYLCV to (A) manipulate Bemisia behaviour; and (B) infect plants. 3. Viruliferous Bemisia fed much more than virus‐free whiteflies on JA‐deficient plants, more than virus‐free whiteflies on controls, and similarly on high‐JA plants. 4. When TYLCV was transmitted via whiteflies, infection levels were lower in high‐JA plants relative to JA‐deficient and control plants. When TYLCV was transmitted via direct injection, JA‐overexpressed and JA‐deficient plants had similar infection levels. The JA‐mediated cessation of vector manipulation thus reduced infection and lessened pathogen impact. 5. The presence of the JA pathway in many plant species suggests that similar interactions may be widespread in nature

    Variation in both host defense and prior herbivory can alter plant-vector-virus interactions

    Get PDF
    Background: While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, ‘TYLCV’), its vector (the whitefly Bemisia tabaci MED), and the host. Results: Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. Conclusions: Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management

    A case study on the impacts of future climate change on soybean yield and countermeasures in Fujin city of Heilongjiang province, China

    Get PDF
    Global climate change poses a great impact on crop growth, development and yield. Soybean production in Northeast China, which is one of the traditional dominant soybean production areas in China, is of great significance for developing the domestic soybean industry and reducing dependence on imported soybeans. Therefore, it is crucial to evaluate the impacts of future climate change on soybean yield in Northeast China, and to propose reasonable adaptation measures. In this study, we took Fujin city of Heilongjiang province in Northeast China as an example, and used the CROPGRO-soybean model in DSSAT (Decision Support System for Agrotechnology Transfer) to simulate the impacts of future climate change on soybean yield in the four periods of the 2020s (2021-2030), 2030s (2031-2040), 2040s (2041-2050) and 2050s (2051-2060) under two representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5), and further determine the best agronomic management practices. The results showed that the calibrated and validated model is suitable for simulating soybean in the study area. By analyzing the meteorological data under future climate scenarios RCP4.5 and RCP8.5 from the PRECIS regional climate model, we found that the average temperature, cumulative precipitation and cumulative solar radiation would mostly increase during the growing season in Fujin city of Heilongjiang province. Combined with the model simulation results, it is shown that under the effect of CO2 fertilization, future climate change will have a positive impact on soybean yield. Compared to the baseline (1986-2005), the soybean yield would increase by 0.6% (7.4%), 3.3% (5.1%), 6.0% (16.8%) and 12.3% (20.6%) in the 2020s, 2030s, 2040s and 2050s under RCP4.5 (RCP8.5).Moreover, the optimal sowing dates and the optimal supplemental irrigation amount under RCP4.5 (RCP8.5) are May 10 (May 5) and 50 mm (40mm), respectively. Under future climate conditions, the agronomic management practices, such as advancing the sowing date and supplementary irrigation in the key stage of soybean growth would increase soybean yield and make soybean growth more adaptable to future climate change
    • 

    corecore