25 research outputs found

    Quantitative Label-Free Proteomic Analysis of Milk Fat Globule Membrane in Donkey and Human Milk

    Get PDF
    Previous studies have found donkey milk (DM) has the similar compositions with human milk (HM) and could be used as a potential hypoallergenic replacement diet for babies suffering from cow's milk allergy. Milk fat globule membrane (MFGM) proteins are involved in many biological functions, behaving as important indicators of the nutritional quality of milk. In this study, we used label-free proteomics to quantify the differentially expressed MFGM proteins (DEP) between DM (in 4–5 months of lactation) and HM (in 6–8 months of lactation). In total, 293 DEP were found in these two groups. Gene Ontology (GO) enrichment analysis revealed that the majority of DEP participated in regulation of immune system process, membrane invagination and lymphocyte activation. Several significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined for the DEP, such as lysosome, galactose metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study may provide valuable information in the composition of MFGM proteins in DM and HM, and expand our knowledge of different biological functions between DM and HM

    Permeability Change Caused by Stress Damage of Gas Shale

    No full text
    Stress damage of shale during the uniaxial loading process will cause the change of permeability. The study of stress sensitivity of shale has focused on the influence of confining pressure on shale permeability and the change of shale permeability during the loading process of axial stress is lacking. The permeability of gas shale during loading process was tested. The results show that shale damage macroscopically reflects the process of axial micro-cracks generation and expansion, and the axial micro-cracks will cause permeability change during the loading process. There is a good corresponding relationship between damage development and micro-crack expansion during the process of shale loading. The damage factor will increase in the linear elastic stage and enlarge rapidly after entering the stage of unstable micro-crack expansion, and the permeability of shale increases with the increasing of shale damage. The research results provide a reliable test basis for further analysis of the borehole instability and hydraulic fracture mechanisms in shale gas reservoirs

    Influence of C–H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly

    No full text
    For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the <i>ortho</i>, <i>meso</i>, or <i>para</i> position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials

    The influence of steam stimulation on compression coefficient of heavy oil reservoirs

    No full text
    Abstract The diminishing oil resources make the exploration and development of heavy oil reservoirs more and more important. Heavy oil reservoirs need steam stimulation or other thermal development methods; temperature increasing during the thermal recovery process will inevitably affect the reservoir compressive characteristics. In order to study the variation of the compression coefficient of heavy oil reservoirs in the multi-round steam stimulation process, the compression coefficients of the reservoirs after different temperature and pore pressure cycles were tested. The results show that the compression coefficient of heavy oil reservoir decreases with the increase in effective confining pressure and increases with the increase in test temperature; After the temperature and pore pressure cycle, the compression coefficient of the rock is greatly reduced; the decrease in range of compression coefficient of the reservoir after the temperature and pore pressure cycle increases with the increase in the test temperature, and increases with the increase in maximum effective confining pressure. The dynamic variation of the reservoir compression coefficient must be taken into account in the prediction of the production capacity of multi-round steam stimulation

    Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials

    No full text
    Understanding the influence of the molecular architecture on the self-assembly and properties of supramolecular organogel materials is necessary for elucidating the structure-property relationship. Although conventional gelation motifs (e.g., amides, long alkyl side chains, and steroidal groups) have been considered essential for the effective gel process, the lack of gelation motifs hinders the development and self-assembly of non-conventional gelators. Herein, coumarin-based derivatives (1-12) without a conventional gelation motif were designed and synthesised by inducing a one-step reaction that entails fine-tuning the molecular architecture, particularly the position of the nitrogen atom in pyridine, the substitution position of pyridine, and the placement of methyl in coumarin. A previous gelation study revealed that 7-substituted coumarin-based derivatives with methyl (1-4) are highly efficient gelators that can self-assemble to form different nanostructures, and gelate various polar protic solvents. After small-scale modification of the molecular structures, Derivatives 5-6 self-assembled and only formed gels in the alcohol phase, whereas gels were not formed by Derivatives 7-12 in various solvents. Interestingly, the fluorescence property of these gels was significantly influenced by the dielectric constant and viscosity of the solvent. Furthermore, differences in the self-assembly and fluorescence of gelators were numerically investigated by performing density functional theory calculations and all-atom molecular dynamics simulations. This study provides a foundation for the development of a low-cost, non-conventional supramolecular organogel system with minimal building blocks, a modifiable self-assembly pathway, and alterable properties

    Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data

    No full text
    Proper straw cover information is one of the most important inputs for agroecosystem and environmental modeling, but the availability of accurate information remains limited. However, several remote-sensing (RS)-based studies have provided a residue cover estimation and provided spatial distribution mapping of paddy rice areas in a constant field condition. Despite this, the performance of rice crops with straw applications has received little attention. Furthermore, there are no methods currently available to quantify the wheat straw cover (WSC) percentage and its effect on rice crops in the rice-wheat cropping region on a large scale and a continuous basis. The novel approach proposed in this study demonstrates that the Landsat satellite data and seven RS-based indices, e.g., (i) normalized difference vegetation index (NDVI), (ii) Normalized difference senescent vegetation index (NDSVI), (iii) Normalized difference index 5 (NDI5), (iv) Normalized difference index 7 (NDI7), (v) Simple tillage index (STI), (vi) Normalized difference tillage index (NDTI), and (vii) Shortwave red normalized difference index (SRNDI), can be used to estimate the WSC percentage and determine the performance of rice crops over the study area in Changshu county, China. The regression model shows that the NDTI index performed better in differentiating the WSC at sampling points with a coefficient of determination (R2 = 0.80) and root mean squared difference (RMSD = 8.46%) compared to that of other indices, whereas the overall accuracy for mapping WSC was observed to be 84.61% and the kappa coefficient was &kappa; = 0.76. Moreover, the rice yield model was established by correlating between the peak NDVI values and rice grain yield collected from ground census data, with R2 = 0.85. The finding also revealed that the highest estimated yield (8439.67 kg/ha) was recorded with 68% WCS in the study region. This study confirmed that the NDVI and NDTI algorithms are very effective and robust indicators. Also, it can be strongly concluded that multispectral Landsat satellite imagery is capable of measuring the WSC percentage and successively determines the impact of different WSC percentages on rice crop yield within fields or across large regions through remote sensing (RS) and geographical information system (GIS) techniques for the long-term planning of agriculture sustainability in rice-wheat cropping systems

    Development of a Crop Spectral Reflectance Sensor

    No full text
    In this study, a low-cost, self-balancing crop spectral reflectance sensor (CSRS) was designed for real-time, nondestructive monitoring of the spectral reflectance and vegetation index of crops such as tomato and rapeseed. The sensor had a field of view of 30°, and a narrow-band filter was used for light splitting. The filter’s full width at half-maximum was 10 nm, and the spectral bands were 710 nm and 870 nm. The sensor was powered by a battery and used WiFi for communication. Its software was based on the Contiki operating system. To make the sensor work in different light intensity conditions, the photoelectric conversion automatic gain circuit had a total of 255 combinations of amplification. The gimbal of the sensor was mainly composed of an inner ring and an outer ring. Under the gravity of the sensor, the central axis of the sensor remained vertical, such that the up-facing and down-facing photosensitive units stayed in the horizontal position. The mechanical components of the sensor were designed symmetrically to facilitate equal mass distribution and to meet the needs of automatic balancing. Based on the optical signal transmission process of the sensor and the dark-current characteristics of the photodetector, a calibration method was theoretically deduced, which improved the accuracy and stability of the sensor under different ambient light intensities. The calibration method is also applicable for the calibration of other crop growth information sensors. Next, the standard reflectance gray scale was taken as the measurement variable to test the accuracy of the sensor, and the results showed that the root mean square error of the reflectance measured by the sensor at 710 nm and 870 nm was 1.10% and 1.27%, respectively; the mean absolute error was 0.95% and 0.89%, respectively; the relative error was below 4% and 3%, respectively; and the coefficient of variation was between 1.0% and 2.5%. The reflectance data measured by the sensor under different ambient light intensities suggested that the absolute error of the sensor was within ±0.5%, and the coefficients of variation at the two spectral bands were 1.04% and 0.39%, respectively. With tomato and rapeseed as the monitoring targets, the proposed CSRS and a commercial spectroradiometer were used to measure at the same time. The results showed that the reflectance measured by the two devices was very close, and there was a linear relationship between the normalized difference vegetation index of the CSRS and that of the commercial spectroradiometer. The coefficient of determination (R2) for tomato and rapeseed were 0.9540 and 0.9110, respectively

    Development of a Crop Spectral Reflectance Sensor

    No full text
    In this study, a low-cost, self-balancing crop spectral reflectance sensor (CSRS) was designed for real-time, nondestructive monitoring of the spectral reflectance and vegetation index of crops such as tomato and rapeseed. The sensor had a field of view of 30&deg;, and a narrow-band filter was used for light splitting. The filter&rsquo;s full width at half-maximum was 10 nm, and the spectral bands were 710 nm and 870 nm. The sensor was powered by a battery and used WiFi for communication. Its software was based on the Contiki operating system. To make the sensor work in different light intensity conditions, the photoelectric conversion automatic gain circuit had a total of 255 combinations of amplification. The gimbal of the sensor was mainly composed of an inner ring and an outer ring. Under the gravity of the sensor, the central axis of the sensor remained vertical, such that the up-facing and down-facing photosensitive units stayed in the horizontal position. The mechanical components of the sensor were designed symmetrically to facilitate equal mass distribution and to meet the needs of automatic balancing. Based on the optical signal transmission process of the sensor and the dark-current characteristics of the photodetector, a calibration method was theoretically deduced, which improved the accuracy and stability of the sensor under different ambient light intensities. The calibration method is also applicable for the calibration of other crop growth information sensors. Next, the standard reflectance gray scale was taken as the measurement variable to test the accuracy of the sensor, and the results showed that the root mean square error of the reflectance measured by the sensor at 710 nm and 870 nm was 1.10% and 1.27%, respectively; the mean absolute error was 0.95% and 0.89%, respectively; the relative error was below 4% and 3%, respectively; and the coefficient of variation was between 1.0% and 2.5%. The reflectance data measured by the sensor under different ambient light intensities suggested that the absolute error of the sensor was within &plusmn;0.5%, and the coefficients of variation at the two spectral bands were 1.04% and 0.39%, respectively. With tomato and rapeseed as the monitoring targets, the proposed CSRS and a commercial spectroradiometer were used to measure at the same time. The results showed that the reflectance measured by the two devices was very close, and there was a linear relationship between the normalized difference vegetation index of the CSRS and that of the commercial spectroradiometer. The coefficient of determination (R2) for tomato and rapeseed were 0.9540 and 0.9110, respectively

    Data for the experiment and calculation from Thermal effect on the compression coefficient of heavy oil reservoir rocks

    No full text
    The ever-decreasing oil resources receive more and more attention for the exploration and development of heavy oil reservoirs. Owing to the high viscosity and poor fluidity of heavy oil, it is necessary to use the method of injecting high-temperature fluid in the development process. But, this will cause a significant increase in the temperature in oil reservoir, and thus the compression coefficient of reservoir rock has a greater impact. The compression coefficient of heavy oil reservoirs at different temperatures was tested. The results show that the compression coefficient of rock is closely related to the nature of rock itself and its stress and temperature environment: The compression coefficient increases with the increase in rock porosity; the compression coefficient decreases with the increase in the effective confining pressure and increases with the increase in temperature. When the temperature is low, the increase in the compression coefficient is larger. As the temperature increases, the increase in the compression coefficient tends to decrease gradually. Because the temperature of the reservoir is higher than that of the ground, the influence of the temperature on the reservoir compression coefficient should be taken into account when carrying out the production forecast

    Identification of Cellular Compositions in Different Microenvironments and Their Potential Impacts on Hematopoietic Stem Cells HSCs Using Single-Cell RNA Sequencing with Systematical Confirmation

    No full text
    Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models
    corecore