7,550 research outputs found

    Unified model for vortex-string network evolution

    Full text link
    We describe and numerically test the velocity-dependent one-scale (VOS) string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behaviour (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and non-relativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual `coarse-grained' approach.Comment: 5 pages; v2: cosmetic changes, version to appear in PR

    Angular distribution of photoluminescence as a probe of Bose Condensation of trapped excitons

    Full text link
    Recent experiments on two-dimensional exciton systems have shown the excitons collect in shallow in-plane traps. We find that Bose condensation in a trap results in a dramatic change of the exciton photoluminescence (PL) angular distribution. The long-range coherence of the condensed state gives rise to a sharply focussed peak of radiation in the direction normal to the plane. By comparing the PL profile with and without Bose Condensation we provide a simple diagnostic for the existence of a Bose condensate. The PL peak has strong temperature dependence due to the thermal order parameter phase fluctuations across the system. The angular PL distribution can also be used for imaging vortices in the trapped condensate. Vortex phase spatial variation leads to destructive interference of PL radiation in certain directions, creating nodes in the PL distribution that imprint the vortex configuration.Comment: 4 pages, 3 figure

    Realization of logically labeled effective pure states for bulk quantum computation

    Full text link
    We report the first use of "logical labeling" to perform a quantum computation with a room-temperature bulk system. This method entails the selection of a subsystem which behaves as if it were at zero temperature - except for a decrease in signal strength - conditioned upon the state of the remaining system. No averaging over differently prepared molecules is required. In order to test this concept, we execute a quantum search algorithm in a subspace of two nuclear spins, labeled by a third spin, using solution nuclear magnetic resonance (NMR), and employing a novel choice of reference frame to uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and remove ambiguitie

    Experimental Measurement of the Persistence Exponent of the Planar Ising Model

    Full text link
    Using a twisted nematic liquid crystal system exhibiting planar Ising model dynamics, we have measured the scaling exponent θ\theta which characterizes the time evolution, p(t)∼t−θp(t) \sim t^{-\theta}, of the probability p(t) that the local order parameter has not switched its state by the time t. For 0.4 seconds to 200 seconds following the phase quench, the system exhibits scaling behavior and, measured over this interval, θ=0.19±0.031\theta = 0.19 \pm 0.031, in good agreement with theoretical analysis and numerical simulations.Comment: 4 pages RevTeX (multicol.sty and epsf.sty needed): 1 EPS figure. Introduction and reference list modifie

    Separability of very noisy mixed states and implications for NMR quantum computing

    Get PDF
    We give a constructive proof that all mixed states of N qubits in a sufficiently small neighborhood of the maximally mixed state are separable. The construction provides an explicit representation of any such state as a mixture of product states. We give upper and lower bounds on the size of the neighborhood, which show that its extent decreases exponentially with the number of qubits. We also discuss the implications of the bounds for NMR quantum computing.Comment: 4 pages, extensively revised, references adde

    NMR quantum computation with indirectly coupled gates

    Full text link
    An NMR realization of a two-qubit quantum gate which processes quantum information indirectly via couplings to a spectator qubit is presented in the context of the Deutsch-Jozsa algorithm. This enables a successful comprehensive NMR implementation of the Deutsch-Jozsa algorithm for functions with three argument bits and demonstrates a technique essential for multi-qubit quantum computation.Comment: 9 pages, 2 figures. 10 additional figures illustrating output spectr

    Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm

    Get PDF
    A scheme to execute an n-bit Deutsch-Jozsa (D-J) algorithm using n qubits has been implemented for up to three qubits on an NMR quantum computer. For the one and two bit Deutsch problem, the qubits do not get entangled, hence the NMR implementation is achieved without using spin-spin interactions. It is for the three bit case, that the manipulation of entangled states becomes essential. The interactions through scalar J-couplings in NMR spin systems have been exploited to implement entangling transformations required for the three bit D-J algorithm.Comment: 4-pages in revtex with 5 eps figure included using psfi

    Electric field-induced creation and directional motion of domain walls and skyrmion bubbles

    Full text link
    Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field, and hold promise for building advanced spintronic devices. Here, we present an experimental and numerical study on the electric field-induced creation and directional motion of topological spin textures in magnetic multilayer films and racetracks with thickness gradient and interfacial Dzyaloshinskii-Moriya interaction at room temperature. We find that the electric field-induced directional motion of chiral domain wall is accompanied with the creation of skyrmion bubbles at certain conditions. We also demonstrate that the electric field variation can induce motion of skyrmion bubbles. Our findings may provide opportunities for developing skyrmion-based devices with ultralow power consumption.Comment: 26 pages, 6 figure

    Implementing universal multi-qubit quantum logic gates in three and four-spin systems at room temperature

    Full text link
    In this paper, we present the experimental realization of multi-qubit gates % \Lambda_n(not) in macroscopic ensemble of three-qubit and four-qubit molecules. Instead of depending heavily on the two-bit universal gate, which served as the basic quantum operation in quantum computing, we use pulses of well-defined frequency and length that simultaneously apply to all qubits in a quantum register. It appears that this method is experimentally convenient when this procedure is extended to more qubits on some quantum computation, and it can also be used in other physical systems.Comment: 5 Pages, 2 Figure

    Quantum Computation and Spin Physics

    Full text link
    A brief review is given of the physical implementation of quantum computation within spin systems or other two-state quantum systems. The importance of the controlled-NOT or quantum XOR gate as the fundamental primitive operation of quantum logic is emphasized. Recent developments in the use of quantum entanglement to built error-robust quantum states, and the simplest protocol for quantum error correction, are discussed.Comment: 21 pages, Latex, 3 eps figures, prepared for the Proceedings of the Annual MMM Meeting, November, 1996, to be published in J. Appl. Phy
    • …
    corecore