7,146 research outputs found

    On clocks and clouds

    Get PDF
    Cumulus clouds exhibit a life cycle that consists of (a) the growth phase (increasing size, most notably in the vertical direction); (b) the mature phase (growth ceases; any precipitation that develops is strongest during this period); and (c) the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support). Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX) and Rain In Cumulus over the Ocean (RICO) campaigns to demonstrate a potential cumulus cloud "clock." We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds), multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase

    Quantum Bit Regeneration

    Get PDF
    Decoherence and loss will limit the practicality of quantum cryptography and computing unless successful error correction techniques are developed. To this end, we have discovered a new scheme for perfectly detecting and rejecting the error caused by loss (amplitude damping to a reservoir at T=0), based on using a dual-rail representation of a quantum bit. This is possible because (1) balanced loss does not perform a ``which-path'' measurement in an interferometer, and (2) balanced quantum nondemolition measurement of the ``total'' photon number can be used to detect loss-induced quantum jumps without disturbing the quantum coherence essential to the quantum bit. Our results are immediately applicable to optical quantum computers using single photonics devices.Comment: 4 pages, postscript only, figures available at http://feynman.stanford.edu/qcom

    D-branes, surface operators, and ADHM quiver representations

    Get PDF
    A supersymmetric quantum mechanical model is constructed for BPS states bound to surface operators in five dimensional SU(r) gauge the- ories using D-brane engineering. This model represents the effective action of a certain D2-brane configuration, and is naturally obtained by dimensional reduction of a quiver (0,2) gauged linear sigma model. In a special stability chamber, the resulting moduli space of quiver representations is shown to be smooth and isomorphic to a moduli space of framed quotients on the projec- tive plane. A precise conjecture relating a K-theoretic partition function of this moduli space to refined open string invariants of toric lagrangian branes is formulated for conifold and local P1 7 P1 geometries

    Ferromagnetic Enhancement of CE-type Spin Ordering in (Pr,Ca)MnO3_3

    Full text link
    We present resonant soft X-ray scattering (RSXS) results from small band width manganites (Pr,Ca)MnO3_3, which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance (CMR) effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic (FM-M) state and CE-type ordering.Comment: Accepted for publication in Phys. Rev. Let

    Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surfaceenhanced Raman scattering substrates

    Get PDF
    A facile and simple route to manufacture active surfaceenhanced Raman scattering (SERS) substrate based on Ag-decorated Cu2O micro/nanospheres on Cu foil was systematically investigated. Hierarchical Cu2O micro/nanostructure transfers from CuO nanosheets and Cu(OH)2 nanowires by means of thermally reducing the oxides from Cu2+ to Cu1+ at temperature of 500 °Cunder nitrogen atmosphere. The subsequent decoration of Ag on Cu2O nanostructural substrate was carried out by means of thermal evaporator deposition. Using 4-aminothiophenol (4-ATP) as probing molecules, the SERS experiments showed that the Ag-decorated Cu2O micro/nanospheres exhibit excellent detecting performance, which could be used as effective SERS substrate for ultrasensitive detection. Additionally, these novel hierarchical SERS substrates showed good reproducibility and a linear dependence between analyte concentrations and intensities, revealing the advantage of this method for easily scale-up production

    Stopping Light All-Optically

    Full text link
    We show that light pulses can be stopped and stored all-optically, with a process that involves an adiabatic and reversible pulse bandwidth compression occurring entirely in the optical domain. Such a process overcomes the fundamental bandwidth-delay constraint in optics, and can generate arbitrarily small group velocities for light pulses with a given bandwidth, without the use of any coherent or resonant light-matter interactions. We exhibit this process in optical resonator systems, where the pulse bandwidth compression is accomplished only by small refractive index modulations performed at moderate speeds. (Accepted for publication in Phys. Rev. Lett. Submitted on Sept. 10th 2003)Comment: 18 pages including 3 figures. Accepted for publication in Phys. Rev. Let

    Electronic superlattice revealed by resonant scattering from random impurities in Sr3Ru2O7

    Get PDF
    Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show -- with simulations and REXS on Mn-substituted Sr3_3Ru2_2O7_7 -- that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that -- in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and M\"ossbauer spectroscopy -- randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques
    corecore