863 research outputs found

    The structural basis of actinomycin D–bindinginduces nucleotide flipping out, a sharp bendand a left-handed twist in CGG triplet repeats

    Get PDF
    The potent anticancer drug actinomycin D (ActD)functions by intercalating into DNA at GpC sites,thereby interrupting essential biological processesincluding replication and transcription. Certainneurological diseases are correlated with the expansionof (CGG)n trinucleotide sequences, whichcontain many contiguous GpC sites separated by asingle G:G mispair. To characterize the binding ofActD to CGG triplet repeat sequences, the structuralbasis for the strong binding of ActD to neighbouringGpC sites flanking a G:G mismatch has beendetermined based on the crystal structure of ActDbound to ATGCGGCAT, which contains a CGGtriplet sequence. The binding of ActD molecules toGCGGC causes many unexpected conformationalchanges including nucleotide flipping out, a sharpbend and a left-handed twist in the DNA helix via atwo site-binding model. Heat denaturation, circulardichroism and surface plasmon resonance analysesshowed that adjacent GpC sequences flanking aG:G mismatch are preferred ActD-binding sites. Inaddition, ActD was shown to bind the hairpin conformationof (CGG)16 in a pairwise combination andwith greater stability than that of other DNAintercalators. Our results provide evidence of apossible biological consequence of ActD bindingto CGG triplet repeat sequences

    Interactions between Amyloid-β and Hemoglobin: Implications for Amyloid Plaque Formation in Alzheimer's Disease

    Get PDF
    Accumulation of amyloid-β (Aβ) peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD). However, why and how Aβ aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb) binds to Aβ and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aβ in vitro and in vivo and report the following observations: 1) the binding of Hb to Aβ required iron-containing heme; 2) other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aβ; 3) hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aβ; 4) Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5) microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aβ surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aβ binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury

    Lasing on nonlinear localized waves in curved geometry

    Get PDF
    The use of geometrical constraints opens many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the transition from delocalized to localized waves. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.Comment: 6 pages, 6 figure

    CSE1L/CAS, the cellular apoptosis susceptibility protein, enhances invasion and metastasis but not proliferation of cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular apoptosis susceptibility (CAS) protein is regarded as a proliferation-associated protein that associates with tumour proliferation as it associates with microtubule and functions in the mitotic spindle checkpoint. However, there is no any actual experimental study showing CAS (or CSE1 and CSE1L) can increase the proliferation of cancer cells. Previous pathological study has reported that CAS was strongly positive stained in all of the metastasis melanoma that be examined. Thus, CAS may regulate the invasion and metastasis of cancers. CAS is highly expressed in cancers; if CAS is associated with cancer proliferation, then increased CAS expression should be able to increase the proliferation of cancer cells. We studied whether increased CAS expression can increase cancer cell proliferation and whether CAS regulates the invasion of cancer cells.</p> <p>Methods</p> <p>We enhanced or reduced CAS expression by transfecting CAS or anti-CAS expression vectors into human MCF-7 breast cancer cells. The proliferations of cells were determined by trypan blue exclusion assay and flow cytometry analysis. Invasion of cancer cells were determined by matrigel-based invasion assay.</p> <p>Results</p> <p>Our studies showed that increased CAS expression was unable to enhance cancer cell proliferation. Immunofluorescence showed CAS was distributed in cytoplasm areas near cell membrane and cell protrusions. CAS was localized in cytoplasmic vesicle and immunogold electronmicroscopy showed CAS was located in vesicle membrane. CAS overexpression enhanced matrix metalloproteinase-2 (MMP-2) secretion and cancer cell invasion. Animal experiments showed CAS reduction inhibited the metastasis of B16-F10 melanoma cells by 56% in C57BL/6 mice.</p> <p>Conclusion</p> <p>Our results indicate that CAS increases the invasion but not the proliferation of cancer cells. Thus, CAS plus ECM-degradation proteinases may be used as the markers for predicting the advance of tumour metastasis.</p

    Bilingual and multilingual mental lexicon: a modeling study with Linear Discriminative Learning

    Get PDF
    This study addresses whether there is anything special about learning a third language, as compared to learning a second language, that results solely from the order of acquisition. We use a computational model based on the mathematical framework of Linear Discriminative Learning to explore this question for the acquisition of a small trilingual vocabulary, with English as L1, German or Mandarin as L2, and Mandarin or Dutch as L3. Our simulations reveal that when qualitative differences emerge between the learning of a first, second and third language, these differences emerge from distributional properties of the particular languages involved rather than the order of acquisition per se, or any difference in learning mechanism. One such property is the number of homophones in each language, since within-language homophones give rise to errors in production. Our simulations also show the importance of suprasegmental information in determining the kinds of production errors made
    • …
    corecore