1,338 research outputs found

    Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    Get PDF
    BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation

    Case Report: Hypothyroidism Misdiagnosed as Fulminant Myocarditis in a Child

    Get PDF
    Background: Hypothyroidism can lead to bradycardia, reduced cardiac output, cardiac enlargement, and abnormal electrocardiogram. However, hemodynamic instability and malignant arrhythmias due to hypothyroidism is rarely reported in children.Patient Findings: We report the case of a child with third-degree atrioventricular block, cardiogenic shock, and Adams Stokes Syndrome, who was initially misdiagnosed with fulminant myocarditis and was later found to have hypothyroidism during treatment.Summary: The child's condition did not improve after the administration of gamma globulin, methylprednisolone, and isoproterenol. Even after the placement of temporary pacemakers, the therapeutic effect was still not ideal. Upon reviewing the medical history, the child's condition improved rapidly after levothyroxine supplementation.Conclusions: Hypothyroidism is a common disease, but secondary severe cardiovascular lesions are particularly rare in children. Therefore, the delay in diagnosis can lead to serious cardiovascular manifestations. When pediatric patients develop severe AVB and bradycardia, hypothyroidism should be considered as a possible cause

    A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying key components in biological processes and their associations is critical for deciphering cellular functions. Recently, numerous gene expression and molecular interaction experiments have been reported in <it>Saccharomyces cerevisiae</it>, and these have enabled systematic studies. Although a number of approaches have been used to predict gene functions and interactions, tools that analyze the essential coordination of functional components in cellular processes still need to be developed.</p> <p>Results</p> <p>In this work, we present a new approach to study the cooperation of functional modules (sets of functionally related genes) in a specific cellular process. A cooperative module pair is defined as two modules that significantly cooperate with certain functional genes in a cellular process. This method identifies cooperative module pairs that significantly influence a cellular process and the correlated genes and interactions that are essential to that process. Using the yeast cell cycle as an example, we identified 101 cooperative module associations among 82 modules, and importantly, we established a cell cycle-specific cooperative module network. Most of the identified module pairs cover cooperative pathways and components essential to the cell cycle. We found that 14, 36, 18, 15, and 20 cooperative module pairs significantly cooperate with genes regulated in early G1, late G1, S, G2, and M phase, respectively. Fifty-nine module pairs that correlate with Cdc28 and other essential regulators were also identified. These results are consistent with previous studies and demonstrate that our methodology is effective for studying cooperative mechanisms in the cell cycle.</p> <p>Conclusions</p> <p>In this work, we propose a new approach to identifying condition-related cooperative interactions, and importantly, we establish a cell cycle-specific cooperation module network. These results provide a global view of the cell cycle and the method can be used to discover the dynamic coordination properties of functional components in other cellular processes.</p

    Transmission of H7N9 influenza virus in mice by different infective routes.

    Get PDF
    BackgroundOn 19 February 2013, the first patient infected with a novel influenza A H7N9 virus from an avian source showed symptoms of sickness. More than 349 laboratory-confirmed cases and 109 deaths have been reported in mainland China since then. Laboratory-confirmed, human-to-human H7N9 virus transmission has not been documented between individuals having close contact; however, this transmission route could not be excluded for three families. To control the spread of the avian influenza H7N9 virus, we must better understand its pathogenesis, transmissibility, and transmission routes in mammals. Studies have shown that this particular virus is transmitted by aerosols among ferrets.MethodsTo study potential transmission routes in animals with direct or close contact to other animals, we investigated these factors in a murine model.ResultsViable H7N9 avian influenza virus was detected in the upper and lower respiratory tracts, intestine, and brain of model mice. The virus was transmissible between mice in close contact, with a higher concentration of virus found in pharyngeal and ocular secretions, and feces. All these biological materials were contagious for naïve mice.ConclusionsOur results suggest that the possible transmission routes for the H7N9 influenza virus were through mucosal secretions and feces

    Urinary excretion of L-carnitine, acetyl-L-carnitine, propionyl-L-carnitine and their antioxidant activities after single dose administration of L-carnitine in healthy subjects

    Get PDF
    The urine excretion of L-carnitine (LC), acetyl-L-carnitine (ALC) and propionyl-Lcarnitine (PLC) and their relations with the antioxidant activities are presently unknown. Liquid L-carnitine (2.0 g) was administered orally as a single dose in 12 healthy subjects. Urine concentrations of LC, ALC and PLC were detected by HPLC. Superoxide dismutase (SOD), total antioxidative capacity (T-AOC), malondialdehyde (MDA) and nitrogen monoxidum (NO) activities were measured by spectrophotometric methods. The 0~2 h, 2~4 h, 4~8 h, 8~12 h, 12~24 h excretion of LC was 53.13±31.36 µmol, 166.93±76.87 µmol, 219.92±76.30 µmol, 100.48±23.89 µmol, 72.07±25.77 µmol, respectively. The excretion of ALC was 29.70±14.43 µmol, 80.59±32.70 µmol, 109.85±49.21 µmol, 58.65±18.55 µmol, and 80.43±35.44 µmol, respectively. The urine concentration of PLC was 6.63±4.50 µmol, 15.33±12.59 µmol, 15.46±6.26 µmol, 13.41±11.66 µmol and 9.67±7.92 µmol, respectively. The accumulated excretion rate of LC was 6.1% within 24h after its administration. There was also an increase in urine concentrations of SOD and T-AOC, and a decrease in NO and MDA. A positive correlation was found between urine concentrations of LC and SOD (r = 0.8277) or T-AOC (r = 0.9547), and a negative correlation was found between urine LC excretions and NO (r = -0.8575) or MDA (r = 0.7085). In conclusion, a single oral LC administration let to a gradual increase in urine L-carnitine excretion which was associated with an increase in urine antioxidant enzymes and the total antioxidant capacities. These data may be useful in designing therapeutic regimens of LC or its analogues in the future.A excreção urinária de L-carnitina (LC), acetil-L-carnitina (ALC) e propionil-L-carnitine (PLC) e as suas relações com as atividades antioxidantes são presentemente desconhecidos. Líquido de L-carnitina (2,0 g) foi administrada por via oral como uma dose única em 12 indivíduos saudáveis. As concentrações urinárias de LC, PLC e ALC foram detectados por HPLC. Atividades superóxido dismutase (SOD), a capacidade antioxidante total (T-AOC), malondialdeído (MDA) e óxido nítrico (NO) foram medidas por métodos espectrofotométricos. O 0~2 h, 2~4 h, 4~8 h, 8~12 h, 12~24 h excreção de LC foi 53,13±31.36 µmol, 166,93±76.87 µmol, 219,92±76.30 µmol, 100,48±23.89 µmol, 72,07±25.77 µmol, respectivamente. A excre&#951;ão de ALC foi 29,70±14.43 µmol, 80,59±32.70 µmol, 109,85±49.21 µmol, 58,65±18.55 µmol, e 80,43±35.44 µmol, respectivamente. A concentra&#951;ão de urina de PLC foi 6,63±4.50 µmol, 15,33±12.59 µmol, 15,46±6.26 µmol, 13,41±11.66 µmol e 9,67±7.92 µmol, respectivamente. A taxa de excre&#951;ão acumulada de LC foi de 6,1% 24 horas após sua administração. Houve também um aumento nas concentrações de urina de SOD e T-COA e diminuição de NO e de MDA. Correlação positiva foi encontrada entre as concentrações de urina de LC e SOD (r = 0,8277) ou T-AOC (r = 0,9547) e correlação negativa entre a excreção de LC e NO (r = -0,8575) ou MDA (r = 0,7085). Em conclusão, a administração oral única de LC leva ao aumento gradual na excreção urinária de L-carnitina, que foi associada com o aumento das enzimas antioxidantes na urina e as capacidades antioxidantes totais. Estes dados podem ser úteis no futuro para o planejamento de esquemas terapêuticos de LC ou os seus análogos, no futuro
    corecore