578 research outputs found

    Extracting hydrothermally altered information using WorldView-3 data: a case study of Huitongshan, NW Gansu, China

    Get PDF
    Introduction: The Huitongshan skarn-type deposits, in which ore bodies primarily occur in the outer contact zone between K-feldspar granite and marble in the Beishan area, are evidently related to hydrothermal alteration of the surrounding rock. Key mineral alteration processes include serpentinization, epidotization, chloritization, carbonatization, jarosite, ferritization, and hematitization.Methods: WorldView-3 (WV-3), a satellite-recorded high-spatial resolution multispectral image, has been widely used in the exploration and prediction of different types of deposits around the world. In this study, WV-3 multispectral images were used to extract the spatial distribution data of the main altered minerals in the Huitongshan area. Dedicated radiometric calibration, atmospheric correction, and image fusion were used to pre-process the extracted spectral information related to hydrothermal alteration. In addition, directed principal component analysis (PCA) and a unique mineral index were designed based on the effective use of the WV-3 data band corresponding to the spectral absorption characteristics of altered minerals.Results: The findings of this study show that the PCA model and mineral index pro-posed herein are reliable both in theory and for practically obtaining extraction information. Additionally, the WV-3 data are well suited for identifying hydroxy-bearing alterations with rich short-wave infrared bands that distinguish Fe-OH–bearing alterations from Mg-OH–bearing alterations. The results obtained were applied to identify potential targets for skarn-type copper deposits and the implementation of prospecting practices.Discussion: This study provides a basis for the application of WV-3 data as an important and effective tool for alteration information extraction and determination of prospecting practice, thereby proving the validity of multispectral remote sensing images in mineral resource exploration

    Numerical optimization of flow noises for mufflers based on the improved BP neural network

    Get PDF
    Aimed at the large noise of tail pipe, the method of fluid dynamics was firstly applied to analyze the inner flow field of the exhaust muffler. According to the result, the large noise of tail pipe was mainly caused by air flow regeneration noise, and the vice muffler was not the major component for generating airflow noise. The largest pressure of the whole muffler system was at the outlet end of main mufflers. The largest flow velocity was in the connection pipe between main mufflers and vice mufflers. Secondly, boundary element model of transmission loss for the muffler was established to compare and analyze it with the experimental. The experimental and computational value of transmission loss for the muffler has a good consistency in both change trend and numerical value, and the computational model was reliable. Finally, GA-BP neural network algorithm was used to optimize the acoustic performance of the muffler. Airflow noises of the tail pipe were effectively reduced through optimizing the inner structure of the muffler

    Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    Get PDF
    The water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoC at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures

    Laser Direct Writing of Visible Spin Defects in Hexagonal Boron Nitride for Applications in Spin-Based Technologies

    Full text link
    Optically addressable spins in two-dimensional hexagonal boron nitride (hBN) attract widespread attention for their potential advantage in on-chip quantum devices, such as quantum sensors and quantum network. A variety of spin defects have been found in hBN, but no convenient and deterministic generation methods have been reported for other defects except negatively charged boron vacancy (VBV_B^-). Here we report that by using femtosecond laser direct writing technology, we can deterministically create spin defect ensembles with spectra range from 550 nm to 800 nm on nanoscale hBN flakes. Positive single-peak optically detected magnetic resonance (ODMR) signals are detected in the presence of magnetic field perpendicular to the substrate, and the contrast can reach 0.8%. With the appropriate thickness of hBN flakes, substrate and femtosecond laser pulse energy, we can deterministically and efficiently generate bright spin defect array. Our results provide a convenient deterministic method to create spin defects in hBN, which will motivate more endeavors for future researches and applications of spin-based technologies such as quantum magnetometer array

    KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases

    Get PDF
    High-throughput experimental technologies often identify dozens to hundreds of genes related to, or changed in, a biological or pathological process. From these genes one wants to identify biological pathways that may be involved and diseases that may be implicated. Here, we report a web server, KOBAS 2.0, which annotates an input set of genes with putative pathways and disease relationships based on mapping to genes with known annotations. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). KOBAS 2.0 can be accessed at http://kobas.cbi.pku.edu.cn

    Hyperaccretion after the Blandford-Znajek Process: a New Model for GRBs with X-Ray Flares Observed in Early Afterglows

    Full text link
    We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers the magnetic instability. At this moment, the hyperaccretion process may onset, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for energies and timescales of GRBs with X-ray flares observed in early afterglows.Comment: 10 pages, 2 figures. Accepted by ChJA

    Residual hepatocellular carcinoma after oxaliplatin treatment has increased metastatic potential in a nude mouse model and is attenuated by Songyou Yin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The opposite effects of chemotherapy, which enhance the malignancy of treated cancers such as hepatocellular carcinoma (HCC), are not well understood. We investigated this phenomenon and corresponding mechanisms to develop a novel approach for improving chemotherapy efficacy in HCC.</p> <p>Methods</p> <p>Human hepatocellular carcinoma cell lines HepG2 (with low metastatic potential) and MHCC97L (with moderate metastatic potential) were used for the in vitro study. An orthotopic nude mouse model of human HCC was developed using MHCC97L cells. We then assessed the metastatic potential of surviving tumor cells after in vitro and in vivo oxaliplatin treatment. The molecular changes in surviving tumor cells were evaluated by western blot, immunofluorescence, and immunohistochemistry. The Chinese herbal extract Songyou Yin (composed of five herbs) was investigated in vivo to explore its effect on the metastatic potential of oxaliplatin-treated cancer cells.</p> <p>Results</p> <p>MHCC97L and HepG2 cells surviving oxaliplatin treatment showed enhanced migration and invasion in vitro. Residual HCC after in vivo oxaliplatin treatment demonstrated significantly increased metastasis to the lung (10/12 vs. 3/12) when re-inoculated into the livers of new recipient nude mice. Molecular changes consistent with epithelial-mesenchymal transition (EMT) were observed in oxaliplatin-treated tumor tissues and verified by in vitro experiments. The Chinese herbal extract Songyou Yin (4.2 and 8.4 g/kg) attenuated EMT and inhibited the enhanced metastatic potential of residual HCC in nude mice (6/15 vs. 13/15 and 3/15 vs. 13/15, respectively).</p> <p>Conclusions</p> <p>The surviving HCC after oxaliplatin treatment underwent EMT and demonstrated increased metastatic potential. Attenuation of EMT by Songyou Yin may improve the efficacy of chemotherapy in HCC.</p
    corecore