480 research outputs found

    Weaving Entities into Relations: From Page Retrieval to Relation Mining on the Web

    Get PDF
    With its sheer amount of information, the Web is clearly an important frontier for data mining. While Web mining must start with content on the Web, there is no effective ``search-based'' mechanism to help sifting through the information on the Web. Our goal is to provide a such online search-based facility for supporting query primitives, upon which Web mining applications can be built. As a first step, this paper aims at entity-relation discovery, or E-R discovery, as a useful function-- to weave scattered entities on the Web into coherent relations. To begin with, as our proposal, we formalize the concept of E-R discovery. Further, to realize E-R discovery, as our main thesis, we abstract tuple ranking-- the essential challenge of E-R discovery-- as pattern-based cooccurrence analysis. Finally, as our key insight, we observe that such relation mining shares the same core functions as traditional page-retrieval systems, which enables us to build the new E-R discovery upon today's search engines, almost for free. We report our system prototype and testbed, WISDM-ER, with real Web corpus. Our case studies have demonstrated a high promise, achieving 83%-91% accuracy for real benchmark queries-- and thus the real possibilities of enabling ad-hoc Web mining tasks with online E-R discovery

    Personal Exposure to Submicrometer Particles and Heart Rate Variability in Human Subjects

    Get PDF
    We conducted a study on two panels of human subjects—9 young adults and 10 elderly patients with lung function impairments—to evaluate whether submicrometer particulate air pollution was associated with heart rate variability (HRV). We measured these subjects’ electrocardiography and personal exposure to number concentrations of submicrometer particles with a size range of 0.02–1 μm (NC(0.02–1)) continuously during daytime periods. We used linear mixed-effects models to estimate the relationship between NC(0.02–1) and log(10)-transformed HRV, including standard deviation of all normal-to-normal intervals (SDNN), square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.40 Hz), adjusted for age, sex, body mass index, tobacco exposure, and temperature. For the young panel, a 10,000-particle/cm(3) increase in NC(0.02–1) with 1–4 hr moving average exposure was associated with 0.68–1.35% decreases in SDNN, 1.85–2.58% decreases in r-MSSD, 1.32–1.61% decreases in LF, and 1.57–2.60% decreases in HF. For the elderly panel, a 10,000-particle/cm(3) increase in NC(0.02–1) with 1–3 hr moving average exposure was associated with 1.72–3.00% decreases in SDNN, 2.72–4.65% decreases in r-MSSD, 3.34–5.04% decreases in LF, and 3.61–5.61% decreases in HF. In conclusion, exposure to NC(0.02–1) was associated with decreases in both time-domain and frequency-domain HRV indices in human subjects

    Effects of Particle Size Fractions on Reducing Heart Rate Variability in Cardiac and Hypertensive Patients

    Get PDF
    It is still unknown whether the associations between particulate matter (PM) and heart rate variability (HRV) differ by particle sizes with aerodynamic diameters between 0.3 μm and 1.0 μm (PM(0.3–1.0)), between 1.0 μm and 2.5 μm (PM(1.0–2.5)), and between 2.5 μm and 10 μm (PM(2.5–10)). We measured electrocardiographics and PM exposures in 10 patients with coronary heart disease and 16 patients with either prehypertension or hypertension. The outcome variables were standard deviation of all normal-to-normal (NN) intervals (SDNN), the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), low frequency (LF; 0.04–0.15 Hz), high frequency (HF; 0.15–0.40 Hz), and LF:HF ratio for HRV. The pollution variables were mass concentrations of PM(0.3–1.0), PM(1.0–2.5), and PM(2.5–10). We used linear mixed-effects models to examine the association between PM exposures and log(10)-transformed HRV indices, adjusting for key personal and environmental attributes. We found that PM(0.3–1.0) exposures at 1- to 4-hr moving averages were associated with SDNN and r-MSSD in both cardiac and hypertensive patients. For an interquartile increase in PM(0.3–1.0), there were 1.49–4.88% decreases in SDNN and 2.73–8.25% decreases in r-MSSD. PM(0.3–1.0) exposures were also associated with decreases in LF and HF for hypertensive patients at 1- to 3-hr moving averages except for cardiac patients at moving averages of 2 or 3 hr. By contrast, we found that HRV was not associated with either PM(1.0–2.5) or PM(2.5–10). HRV reduction in susceptible population was associated with PM(0.3–1.0) but was not associated with either PM(1.0–2.5) or PM(2.5–10)

    Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Get PDF
    Indium tin oxide (ITO) thin films were grown on glass substrates by direct current (DC) reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm) of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS) solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells

    Surface scattering mechanisms of tantalum nitride thin film resistor

    Get PDF
    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms

    Decision Theory-Based COI-SNP Tagging Approach for 126 Scombriformes Species Tagging

    Get PDF
    The mitochondrial gene cytochrome c oxidase I (COI) is commonly used for DNA barcoding in animals. However, most of the COI barcode nucleotides are conserved and sequences longer than about 650 base pairs increase the computational burden for species identification. To solve this problem, we propose a decision theory-based COI SNP tagging (DCST) approach that focuses on the discrimination of species using single nucleotide polymorphisms (SNPs) as the variable nucleotides of the sequences of a group of species. Using the example of 126 teleost mackerel fish species (order: Scombriformes), we identified 281 SNPs by alignment and trimming of their COI sequences. After decision rule making, 49 SNPs in 126 fish species were determined using the scoring system of the DCST approach. These COI-SNP barcodes were finally transformed into one-dimensional barcode images. Our proposed DCST approach simplifies the computational complexity and identifies the most effective and fewest SNPs to resolve or discriminate species for species tagging

    Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis

    Get PDF
    Endogenous opioid peptides have an essential role in the intrinsic modulation and control of inflammatory pain, which could be therapeutically useful. In this study, we established a muscular electroporation method for the gene transfer of pro-opiomelanocortin (POMC) in vivo and investigated its effect on inflammatory pain in a rat model of rheumatoid arthritis. The gene encoding human POMC was inserted into a modified pCMV plasmid, and 0–200 μg of the plasmid-POMC DNA construct was transferred into the tibialis anterior muscle of rats treated with complete Freund's adjuvant (CFA) with or without POMC gene transfer by the electroporation method. The safety and efficiency of the gene transfer was assessed with the following parameters: thermal hyperalgesia, serum adrenocorticotropic hormone (ACTH) and endorphin levels, paw swelling and muscle endorphin levels at 1, 2 and 3 weeks after electroporation. Serum ACTH and endorphin levels of the group into which the gene encoding POMC had been transferred were increased to about 13–14-fold those of the normal control. These levels peaked 1 week after electroporation and significantly decreased 2 weeks after electroporation. Rats that had received the gene encoding POMC had less thermal hypersensitivity and paw swelling than the non-gene-transferred group at days 3, 5 and 7 after injection with CFA. Our promising results showed that transfer of the gene encoding POMC by electroporation is a new and effective method for its expression in vivo, and the analgesic effects of POMC cDNA with electroporation in a rat model of rheumatoid arthritis are reversed by naloxone
    corecore