4,589 research outputs found

    Interpretations and Implications of the Top Quark Rapidity Asymmetries AFBtA_{FB}^t and AFBA_{FB}^{\ell}

    Full text link
    Forward-backward asymmetries AFBtA_{FB}^t and AFBA_{FB}^\ell are observed in the top quark tt rapidity distribution and in the rapidity distribution of charged leptons \ell from top quark decay at the Tevatron proton-antiproton collider, and a charge asymmetry ACA_C is seen in proton-proton collisions at the Large Hadron Collider (LHC). In this paper, we update our previous studies of the Tevatron asymmetries using the most recent data. We provide expectations for ACA_C at the LHC based first on model independent extrapolations from the Tevatron, and second based on new physics models that can explain the Tevatron asymmetries. We examine the relationship of the two asymmetries AFBtA_{FB}^t and AFBA_{FB}^\ell. We show their connection through the (VA)(V-A) spin correlation between the charged lepton and the top quark with different polarization states. We show that the ratio of the two asymmetries provides independent insight into new physics models that are invoked to fit the top quark asymmetry. We emphasize the value of the measurement of both asymmetries, and we conclude that a model which produces more right-handed than left-handed top quarks is favored by the present Tevatron data.Comment: Some figures changed. A typo in appendix fixed. Published in Physical Review

    Repeat-Until-Success Quantum Computing

    Full text link
    We demonstrate the possibility to perform distributed quantum computing using only single photon sources (atom-cavity-like systems), linear optics and photon detectors. The qubits are encoded in stable ground states of the sources. To implement a universal two-qubit gate, two photons should be generated simultaneously and pass through a linear optics network, where a measurement is performed on them. Gate operations can be repeated until a success is heralded without destroying the qubits at any stage of the operation. In contrast to other schemes, this does not require explicit qubit-qubit interactions, a priori entangled ancillas nor the feeding of photons into photon sources.Comment: 5 pages, 2 figures, v3: substantially revised, v4: typos correcte

    Top Quark Polarization As A Probe of Models with Extra Gauge Bosons

    Full text link
    New heavy gauge bosons exist in many models of new physics beyond the standard model of particle physics. Discovery of these W^\prime and Z^\prime resonances and the establishment of their spins, couplings, and other quantum numbers would shed light on the gauge structure of the new physics. The measurement of the polarization of the SM fermions from the gauge boson decays would decipher the handedness of the coupling of the new states, an important relic of the primordial new physics symmetry. Since the top quark decays promptly, its decay preserves spin information. We show how decays of new gauge bosons into third generation fermions (W^\prime \to tb, Z^\prime\to t\bar{t}) can be used to determine the handedness of the couplings of the new states and to discriminate among various new physics models

    Sizes of Minimum Connected Dominating Sets of a Class of Wireless Sensor Networks

    Get PDF
    We consider an important performance measure of wireless sensor networks, namely, the least number of nodes, N, required to facilitate routing between any pair of nodes, allowing other nodes to remain in sleep mode in order to conserve energy. We derive the expected value and the distribution of N for single dimensional dense networks

    Approach to accurately measuring the speed of optical precursors

    Get PDF
    Precursors can serve as a bound on the speed of information with dispersive medium. We propose a method to identify the speed of optical precursors using polarization-based interference in a solid-state device, which can bound the accuracy of the precursors' speed to less than 10410^{-4} with conventional experimental conditions. Our proposal may have important implications for optical communications and fast information processing.Comment: 4 pages, 4 figure

    Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs

    Full text link
    The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a non-universal ZZ^\prime model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the ZZ^\prime to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tttt and ttjttj production in early LHC experiments at 7-8 TeV and conclude that if {\it no} tttt signal is observed with 1 fb1^{-1} of integrated luminosity, then a non-universal ZZ^\prime alone cannot explain the Tevatron forward-backward asymmetry.Comment: Tevatron limit from same-sign tt search adde

    More on volume dependence of spectral weight function

    Full text link
    Spectral weight functions are easily obtained from two-point correlation functions and they might be used to distinguish single-particle from multi-particle states in a finite-volume lattice calculation, a problem crucial for many lattice QCD simulations. In previous studies, it is shown that the spectral weight function for a broad resonance shares the typical volume dependence of a two-particle scattering state i.e. proportional to 1/L31/L^3 in a large cubic box of size LL while the narrow resonance case requires further investigation. In this paper, a generalized formula is found for the spectral weight function which incorporates both narrow and broad resonance cases. Within L\"uscher's formalism, it is shown that the volume dependence of the spectral weight function exhibits a single-particle behavior for a extremely narrow resonance and a two-particle behavior for a broad resonance. The corresponding formulas for both A1+A^+_1 and T1T^-_1 channels are derived. The potential application of these formulas in the extraction of resonance parameters are also discussed

    The Top Quark Production Asymmetries AFBtA_{FB}^t and AFBA_{FB}^{\ell}

    Full text link
    A large forward-backward asymmetry is seen in both the top quark rapidity distribution AFBtA_{FB}^t and in the rapidity distribution of charged leptons AFBA_{FB}^\ell from top quarks produced at the Tevatron. We study the kinematic and dynamic aspects of the relationship of the two observables arising from the spin correlation between the charged lepton and the top quark with different polarization states. We emphasize the value of both measurements, and we conclude that a new physics model which produces more right-handed than left-handed top quarks is favored by the present data.Comment: accepted for publication in Physical Review Letter
    corecore