research

Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs

Abstract

The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a non-universal ZZ^\prime model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the ZZ^\prime to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tttt and ttjttj production in early LHC experiments at 7-8 TeV and conclude that if {\it no} tttt signal is observed with 1 fb1^{-1} of integrated luminosity, then a non-universal ZZ^\prime alone cannot explain the Tevatron forward-backward asymmetry.Comment: Tevatron limit from same-sign tt search adde

    Similar works