68 research outputs found

    Correlating Cell Behavior with Tissue Topology in Embryonic Epithelia

    Get PDF
    Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.Comment: PLoS one 201

    Dynamic morphoskeletons in development

    Get PDF

    Excess caffeine exposure impairs eye development during chick embryogenesis

    Get PDF
    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1(+) cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression

    Robo signaling regulates the production of cranial neural crest cells

    Get PDF
    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1+ cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development

    PTEN is involved in modulation of vasculogenesis in early chick embryos

    Get PDF
    Summary PTEN is a tumor suppressor gene that is mutated and/or deleted in many types of tumor. This gene also plays a very distinct role in the early stages of embryonic development such as cell migration, proliferation and migration. Nevertheless, little is known of the function of PTEN in vasculogenesis during chick embryonic development. In this study, we used in situ hybridization to first demonstrate the expression pattern of PTEN during gastrulation. PTEN was found mainly expressed in the blood islands of area opaca, the neural tube and mesodermal structures. Overexpression of PTEN obstructed the epithelial–mesenchymal transition (EMT) process in the primitive streak. EMT is the first prerequisite required for the emigration of hemangioblasts during vasculogenesis. When PTEN expression was silenced, we observed that it produced an adverse effect on mesodermal cell emigration to the extra-embryonic blood islands. In addition, we also demonstrated that even if the perturbed-PTEN cells did not affect the formation of blood islands, migrant mesodermal cells overexpressing wt PTEN-GFP had difficulties integrating into the blood islands. Instead, these cells were either localized on the periphery of the blood islands or induced to differentiate into endothelial cells if they managed to integrate into blood islands. Development of the intra-embryonic primary vascular plexus was also affected by overexpression of PTEN. We proposed that it was elevated PTEN lipid phosphatase activity that was responsible for the morphogenetic defects induced by PTEN overexpression. In this context, we did not find PTEN affecting VEGF signaling. In sum, our study has provided evidence that PTEN is involved in vasculogenesis during the early stages of chick embryo development

    Ethanol exposure leads to disorder of blood island formation in early chick embryo

    Get PDF
    Ethanol’s effect on embryonic vasculogenesis and its underlying mechanism is obscure. Using VE-cadherin in situ hybridization, we found blood islands formation was inhibited in area opaca, but abnormal VE-cadherin+ cells were seen in area pellucida. We hypothesise ethanol may affect blood island progenitor cell migration and differentiation. DiI and in vitro experiments revealed ethanol inhibited cell migration, Quantitative PCR analysis revealed that ethanol exposure enhanced cell differentiation in area pellucida of HH5 chick embryos and repressed cell differentiation in area pellucida of HH8 chick embryos. By exposing to 2,2′-azobis-amidinopropane dihydrochloride, a ROS inducer, which gave a similar anti-vasculogenesis effect as ethanol and this anti-vasculogenesis effect could be reversed by vitamin C. Overall, exposing early chick embryos to ethanol represses blood island progenitor cell migration but disturbed differentiation at a different stage, so that the disorder of blood island formation occurs through excess ROS production and altered vascular-associated gene expression
    corecore