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Abstract 

Dexamethasone (Dex) is commonly used in the treatment of a variety of benign and 

malignant conditions. Unfortunately, although it has a variety of teratogenic effects, it 

remains used in clinical practice for pregnant women mainly due to limited alternatives. 

However, there is limited knowledge of the mechanisms that lead to the observed teratogenic 

effects. In this study, the effects of Dex during embryogenesis on neural crest development 

were evaluated in the early chick embryos. First, we demonstrated that 100µL 10-6 M Dex 

treatment leads to craniofacial developmental defects, and also retards embryo growth and 

plausibly can cause embryo demise. Second, we demonstrated that Dex represses the 

production of HNK-1, PAX7 and AP-2α labeled cranial neural crest cells (CNCCs), the 

progenitor cells of the craniofacial skeleton. Third, double immunofluorescent staining of 

pHIS3/PAX7 and AP-2α/c-Caspase3 revealed that Dex promotes cell apoptosis but does not 

change cell proliferation rates. Last, FGF signaling molecules were inhibited by Dex 

treatment. Dex also inhibited NCCs production by repressing Msx1 expression in the 

developing neural tube and by altering expression of epithelial-mesenchymal 

transition-related adhesion molecules and cell migration genes. Overall, we obtained 

experimental evidence that Dex treatment during embryogenesis disrupts cranial neural crest 

(CNC) development which in turn causes defective cranial bone development. 

 

Key words: dexamethasone (Dex); cranial neural crest (CNC); skeletogenesis; Fgf 
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INTRODUCTION 

As a long-acting glucocorticoid, dexamethasone (Dex) is often clinically used to treat certain 

kinds of arthritis, severe allergies, asthma and occasionally as part of chemotherapy 

treatments (Hanaizi et al., 2015). However, it is noteworthy that glucocorticoids are 

potentially teratogenic (Rajadurai and Tan, 2003; Uno et al., 1990). It has been previously 

demonstrated that Dex treatment has a role in the cellular and molecular mechanisms 

associated with the development of cleft palate (Azziz and Ladda, 1990). Other defects such 

as encephalocele, meningocele and minor cranial skeletal abnormalities can develop in rhesus 

macaques when exposed to triamcinolone acetonide or Dex during gestation (Jerome and 

Hendrickx, 1988). There have also been some reports that Dex impairs palatogenesis in 

murine embryonic palatal shelves (Lu et al., 2008; Natsume et al., 1986). Meyer-Bahlburg et 

al. demonstrated alteration in cognitive and motor development of children from women who 

took Dex prenatally (Meyer-Bahlburg et al., 2004). These birth defects are closely associated 

with the development of the neural crest, a special cell population during embryonic 

development. Given that, we focused on the effects of prenatal use of Dex on neural crest 

generation, which remains controversial. 

As a group of ecto-mesenchymal cells, neural crest cells (NCCs) derive bilaterally from 

the margins of the dorsal-side of the neural tube and extensively migrate shortly before and 

after neural tube closure into specific locations. Subsequently, they differentiate into many 

tissue derivatives within developing embryos (Smith et al., 2013). Due to these extraordinary 

abilities, NCCs are sometimes referred to as the fourth embryonic germ layer. NCCs undergo 

the processes of neural induction, delamination, epithelial-mesenchymal transition (EMT) 
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and migration to give rise to the different tissues (Hall, 2008). The NCCs rising from the 

lateral tips of embryonic diencephalon, mesencephalon and rhombencephalon are defined as 

cranial neural crest (CNC), which is distinct from the cardiac and trunk neural crest (Chai and 

Maxson, 2006). Unlike trunk neural crest cells which show minimal skeletogenic capacity, 

cranial neural crest cells (CNCCs) possess the ability to form cartilage and bone. During 

craniofacial development, the CNC contributes to all of the craniofacial skeleton (Cordero et 

al., 2011; Schneider, 1999).  

We previously reported that hyperglycemia impairs the ability of NCCs to differentiate 

into cranial bone (Wang et al., 2015), and imidacloprid exposure suppresses NCCs generation 

(Wang et al., 2016). These reports show that NCCs are sensitive and vulnerable to external 

insults when they initially delaminate and migrate within the embryos during spatiotemporal 

development. Several families of signaling molecules, including FGF, BMP, and WNT, are 

implicated in the accurately controlled development of NCC and its derivatives (Hall, 2008; 

Simoes-Costa and Bronner, 2015; Smith et al., 2013). Various signaling families play 

different roles on NCC differentiation (Fantauzzo and Soriano, 2015). Of these, the fibroblast 

growth factor (FGF) family remains very important (Basch and Bronner-Fraser, 2006). Fgf8, 

a member of FGF family, is involved in the induction, patterning, migration, and 

differentiation of NCCs, and promoting the development of chondrogenic, odontogenic, 

adipogenic, and neurogenic progenitors (Shao et al., 2015). Additionally, research has shown 

that Fgf8 promotes neural crest derived mesenchyme survival and induces the developmental 

program required for the first branchial arch morphogenesis, which later develops into a 

number of craniofacial skeletal elements including jaws and teeth (Trumpp et al., 1999).  
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In this study, we used the classical chick embryo model (Li et al., 2013) to explore the 

possible negative effects of Dex treatment on the CNC, and to elucidate the cellular and 

molecular mechanism involved.  

 

MATERIALS AND METHODS 

Chick embryos. Fertilized leghorn eggs were acquired from the Avian Farm of South China 

Agriculture University (Guangzhou, China). Dex (Sigma, MO, USA) was administered using 

two different protocols. The first was early embryo treatment, in which the fertilized eggs, at 

Hamburger-Hamilton (HH) stage 0 (Chapman et al., 2001), were incubated in EC culture 

(Streit, 2008) in the presence of DMSO (control) or Dex (10-6 M, dissolved in 0.1% DMSO) 

inside a humidified incubator (Yiheng Instrument, Shanghai, China) set at 38 °C and 70% 

humidity. The embryos from these incubated eggs were harvested for analysis when they 

reached the desired developmental HH stages (Solloway et al., 1998). In the second model 

for later stage embryos, 100 µL of DMSO or Dex (10-6 M) were carefully injected into a 

small hole made in the air chamber of the pre-incubated HH4 embryo eggs. After treatment, 

the embryos were further incubated 13 days before being harvested for analysis. 

 

Alizarin red staining of whole embryos. The craniofacial skeleton was visualized in 

13-day (E13) chick embryos by staining with alizarin red dyes (Solarbio, Beijing, China). 

Briefly, the embryos were fixed in 95% ethanol for 3 days, then the skin and viscera were 

carefully removed before post-fixation for an additional 1 day. The embryos were then 

pretreated in 0.5% KOH (Jielong, Guangzhou, China) for 48 hours before they were stained 
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with the alizarin red dye suspended in 0.5% KOH for 3 days. Finally, the embryos were 

cleared in a graded series of glycerol. The craniofacial skeleton was photographed using a 

stereomicroscope (Olympus MVX10, Japan).  

 

Immunofluorescent staining. Chick embryos were harvested after incubation and fixed 

in 4% PFA (Newprobe Bioscience Technology Co., Ltd, Beijing, China) overnight at 4 oC. 

Immunofluorescent staining for whole-mount embryos or primary explants were performed 

using: HNK-1 (1:200, Sigma, USA), PAX7 (1:200, DSHB, USA), AP-2α (1:100, DSHB, 

USA), phospho-Histone3 (pHIS3; 1:200, Santa Cruz, USA), and cleaved-Caspase3 

(c-Caspase3, 1:200, Cell Signaling Technology, USA) antibodies. Briefly, the fixed chick 

embryos were incubated with the primary antibodies at 4 oC overnight on a shaker. After 

extensive rinsing in PBST (0.1% Tween-20), the embryos were treated with the 

corresponding Alexa Fluor® 555 or 488 labeled secondary antibody (1:1000, Invitrogen, 

USA) at 4 oC overnight on a shaker. For double immunofluorescent staining, the antibodies 

were incubated one after the other. All the embryos were later counterstained with DAPI 

(1:1000, Invitrogen) at room temperature for 1 hour. Subsequently, the stained embryos were 

sectioned at 10 μm using a cryostat (Leica CM1900). At least 6 embryos were employed in 

each group. For each embryo, three planes were selected evenly in the region beyond the 

rhomebencephalon and before the heart. Subsequently, three sections were selected from 

each plane. 

 

In situ hybridization. Whole-mount in situ hybridization of chick embryos was 



 

8 
 

performed according to a standard in situ hybridization protocol (Henrique et al., 1995). 

Previously published Digoxigenin-labeled probes were synthesized to detect Fgf8 and Msx1 

mRNAs (GEISHA ISH Analysis) (Lu et al., 2014; Wang et al., 2016). Whole-mount stained 

embryos were photographed and then frozen sections at a thickness of 20 μm were prepared 

from these embryos for histological analysis. 

 

RNA isolation and quantitative-PCR (q-PCR) analysis. Total RNA was isolated from 

HH10 chick embryos heads（N > 25）using a Trizol kit (Invitrogen, USA) according to the 

manufacturer's instructions. First-strand cDNA synthesis and SYBR® Green qPCR assay was 

performed using a PrimeScriptTM RT reagent kit (Takara, Japan). All specific primer 

sequences used are described in Supplementary Figure S1 (Gilmour et al., 1995; Smith and 

Fauquet, 1984). Reverse transcription and amplification reactions were performed in Bio-Rad 

S1000TM (Bio-Rad, USA) and ABI 7000 thermal cyclers, respectively. The housekeeping 

gene GAPDH was run in parallel to confirm that equal amounts of RNA were used in each 

reaction. The expression of the genes was normalized to GAPDH, and the expression level 

was compared by ΔΔCt. The q-PCR result was representative of three independent 

experiments. 

 

Primary NCC cultures. NCCs were prepared from the cranial neural tubes isolated from 

chick embryos, according to methods previously described (Etchevers, 2011). Briefly, 

fertilized chick eggs were incubated until the 7-9 somite stage (HH 9-9+). The neural tube 

was then dissected from the head region of the embryo and explanted into 3.5 mm dishes 
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containing DMEM and 10% FBS for 6 hours at 37 oC and 5% CO2, to allow the explants to 

adhere. The explants were then incubated until a few NCCs were observed migrating out of 

the neural tubes. At this point, 1 mL of culture medium containing DMSO (Control) or Dex 

(10-6 M) was introduced into the cultures. The treated explants were allowed to develop for 

48 hours and then the areas containing the migrant NCCs were measured and analyzed using 

Image-Pro Plus 7.0 (IPP, Media Cybernetics, MD, USA). After incubation, the NCCs 

cultures were washed with pre-warmed PBS and fixed in PFA.  

 

Scratch wound migration assay. A “scratch wound” was created by scraping a monolayer 

culture of HEK293 cells using a sterile 100 µL pipette as described previously (Cheng et al., 

2012). The “wounded” cultures were then incubated in DMEM plus 10% FBS for 48 hours. 

At selected time intervals, HEK293 cells that have migrated into the wound areas were 

photographed using an inverted microscope, and the migrating distance from the edge of 

scratch wound was measured using IPP software. The assays were performed thrice using 

triplicate culture wells. 

 

Photography. Following immunofluorescent/in situ hybridization staining, whole mount 

embryos and regions of interest were photographed using a stereo-fluorescence microscope 

and processed using Olympus software package Image-Pro Plus 7.0. The embryos were then 

sectioned at 10 µm on a cryostat microtome (Leica CM1900), photographed using an 

Olympus IX51epi-fluorescent microscope (at 200× and 400×) and analyzed using a 

CW4000 FISH Olympus software. 
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Data analysis. All data analyses and graphics were performed using the Graphpad Prism 5 

software (Graphpad Software, CA, USA). The results were presented as the mean value ( x ± 

SE). All data were analyzed using the two-tailed t test to establish difference between the 

experimental and control groups. P < 0.05 was considered to be significantly different. 

 

RESULTS 

Dex treatment increases the risk of developmental defects of the craniofacial skeleton in 

chick embryos  

Exposing early chick embryos with 10-6 M Dex increased the incidence of shortened 

coracoids (Figs. 1B, E) or curved coracoids (Figs. 1C, F) in comparison to controls (Figs. 1A, 

D). Additionally, 13 day-old chick embryo skulls were stained with alizarin red dye 

following 10-6 M Dex treatment to investigate which craniofacial skeletal elements were 

affected by Dex treatment (Figs. 1G-I). This demonstrated that there were distinct 

developmental defects on the maxillary bone (mx) in embryos treated with 10-6 M Dex in 

comparison to control embryos (Figs. 1G’-I’, L). The alizarin red staining results 

demonstrated that maxillary bone formation was impaired which might imply part or full 

absence of the bone (shown by arrows in Figs. 1H’, I’). The rest of the skull showed no 

obviously detectable malformation except for overall developmental delay. Dex treatment 

also increased the mortality (Figure 1J) and reduced the body weight (Control: 6.703 ± 0.172 

g, n = 9; Dex: 5.329 ± 0.129 g, n = 17; P = 0.000; Figure 1K) of the embryos. 

As Figure 2 shows, the chick embryos in the control group would develop to HH10 (Figs. 
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2A-D) after 42 hours of incubation, but some of the chick embryos exposed to Dex were still 

at HH8 for the same incubation time (Figs. 2E-H). The extent of the chick embryo’ 

development was quantified by measuring the length of the embryos’ anterior-posterior axis 

when both groups developed to the desired stage of HH10. The anterior-posterior length of 

embryos treated with Dex was shorter than the control embryos (Control: 4.190 ± 0.031 mm, 

n = 28; Dex: 3.833 ± 0.063 mm, n = 28; P = 0.000; Figure 2K). Generally, the normal chick 

embryos’ incubation time-points of 0h, 18h, 28h and 42h in EC culture corresponded to the 

developmental stages HH0, HH4, HH7-8 and HH10, respectively (Figure 2). Therefore, 

maturation was evaluated by the ratio of the number of embryos which reached the desired 

developmental stage at different developmental time-points. The maturation rate in 

Dex-treated embryos was lower than the controls (18h-Control: 0.893 ± 0.022, n = 45; Dex: 

0.705 ± 0.011, n = 45; P = 0.001; 24h-Control: 0.900 ± 0.028, n = 45; Dex: 0.559 ± 0.006, n 

= 45; P = 0.000; 42h-Control: 0.890 ± 0.031, n = 45; Dex: 0.632 ± 0.011, n = 45; P = 0.001; 

Figure 2J), suggesting that Dex treatment of chick embryos retards the growth velocity of the 

chick embryos. Lastly, exposing to Dex at HH0 increased the mortality of chick embryos 

compared to controls (Figure 2I).  

 

Dex treatment suppresses CNC production during chick embryo development  

Since the craniofacial bones are mainly derived from CNC during the early stages of 

embryogenesis (Santagati and Rijli, 2003), it is reasonable to assume that the developmental 

defects of the craniofacial skeleton mentioned above are due to faulty NCCs generation and 

differentiation. We evaluated the expression of three NCCs-associated markers including 
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HNK-1 (marker for migratory NCCs), PAX7 (marker for pre-migratory and migratory NCCs) 

and Ap-2α (marker for CNCCs), in the presence or absence of Dex during gastrula 

development (Figure 3). First, the HNK-1 immunofluorescent staining showed that the areas 

of HNK-1+ migratory NCCs were significantly reduced in presence of 10-6 M Dex – as 

demonstrated in whole-mount preparations (Figs. 3A-D) and transverse histological sections 

(Control: (2.629 ± 0.317) × 104 μm², n = 6; Dex: (0.873 ± 0.162) × 104 μm², n = 6, P = 

0.001; Figs. 3B1-B2, D1-D2, M). Similar findings were seen with the number of PAX7+ 

NCCs in whole-mount preparations (Figs. 3E-H) and transverse sections (Control: 114.778 ± 

11.638, n = 6; Dex: 69.907 ± 8.879, n = 6, P = 0.011; Figs. 3F1-F2, H1-H2, N). Likewise, the 

number of Ap-2α+ CNCCs were also reduced by Dex treatment in both whole-mount 

preparations (Figs. 3I-L) and transverse sections (Control: 128.667 ± 6.265, n = 6; Dex: 

86.333 ± 5.162, n = 6; P = 0.000; Figs. 3J1-J2, L1-L2, O). These immunofluorescent staining 

results imply that Dex treatment represses the production and migration of CNC.  

 

Dex treatment does not affect cell proliferation but promotes apoptosis of developing 

CNC  

We studied whether or not cell proliferation and apoptosis are involved in the reduction of 

NCCs production in presence of Dex. Using double immunofluorescent staining for PAX7 

and pHIS3 or AP-2α and c-Caspase3 co-expression, we demonstrated that there was not a 

significant difference between the number of CNCCs co-expressing PAX7 and pHIS3 

between Dex-treated embryos and control embryos in both whole-mount preparations (Figs. 

4A-D) and transverse sections (Control: 3.474 ± 0.547, n = 6; Dex: 3.538 ± 0.527, n = 6; P 
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=0.935; Figs. 4B1-B3, D1-D3, I). However, the number of CNCCs co-expressing AP-2α and 

c-Caspase3 was significantly increased in the Dex-treated embryos than in controls in both 

whole-mount preparations (Figs. 4E-H) and transverse sections (Control: 1.333 ± 0.211, n = 6; 

Dex: 3.833 ± 0.401, n = 6; P = 0.000; Figs. 4F1-F3, H1-H3, J). We further calculated the 

percentage of PAX7 and pHIS3 double positive cells, AP-2α and c-Caspase3 double positive 

cells to the whole PAX7 positive cells in control and Dex-treated embryos respectively, the 

results showed the same trend as the quantitative analysis of double positive cell numbers 

(Control: 3.265 ± 0.482%, n = 6; Dex: 3.502 ± 0.482%, n = 6; P = 0.736; Fig. 4K; and 

Control: 1.065 ± 0.197%, n = 6; Dex: 4.593 ± 0.641%, n = 6; P = 0.000; Fig. 4L). These 

results suggest that Dex treatment increases CNC apoptosis but does not exert obvious effect 

on cell proliferation.  

 

Dex treatment inhibits expression of FGF signaling in neural tubes of chick embryos  

We performed in situ hybridization to determine if Fgf8 mRNA expression is inhibited in 

early chick embryos when exposed to 10-6 M Dex. The results demonstrated that Fgf8 

expression was dramatically inhibited when treated with Dex in comparison to controls in 

both whole-mount preparations (Figs. 5A-D) and transverse sections (Figs. 5B1-B2, D1-D2). 

Using q-PCR, we determined that Fgf8 (Control: 1.000 ± 0.139, n = 3; Dex: 0.520 ± 0.086, n 

= 3; P = 0.043), Fgf10 (Control: 1.000 ± 0.084, n=3; Dex: 0.584 ± 0.116, n = 3; P = 0.044), 

Fgfr1 (Control: 1.000 ± 0.048, n = 3; Dex: 0.542 ± 0.051, n = 3; P = 0.003), Fgfr3 (Control: 

1.000 ± 0.046, n = 3; Dex: 0.469 ± 0.071, n = 3; P = 0.003), Sox2 (Control: 1.000 ± 0.043, n 

= 3; Dex: 0.6301 ± 0.077, n = 3; P = 0.014) and Sox3 (Control: 1.000 ± 0.029, n = 3; Dex: 

删除的内容:  gastrula
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0.685 ± 0.108, n = 3; P = 0.048) expressions were correspondingly repressed in Dex-treated 

embryos as compared with control embryos (Figure 5E). Only the expression of Fgfr2 was 

not affected by Dex treatment (Control: 1.000 ± 0.331, n = 3; Dex: 0.722 ± 0.032, n = 3; P = 

0.450; Figure 5E).  

To further confirm the influence of FGF signaling on NCCs production, we exposed half 

of the embryo slide to 100 μM SU5402 (fibroblast growth factor receptor-specific tyrosine 

kinase inhibitor), while other side of embryo slide was used as a control. This method has 

been described in detail in our previous publication (Li et al., 2013). This showed that 

HNK-1+ staining area of SU5402-exposed side of embryos were significantly reduced in both 

whole-mount (Control: (1.380 ± 0.101) × 104 μm², n = 7; SU5402: (1.052 ± 0.867) × 104 

μm², n = 7; P = 0.029, Figs. 5G, H) and transverse sections (Control: (2.839 ± 0.434) × 105 

μm², n = 6; SU5402: (1.807 ± 0.085) × 105 μm², n = 6; P = 0.041, Figs. 5G1-G2, I) 

compared to controls. These findings further validate that FGF signaling is involved in 

Dex-induced inhibition of the migration of NCCs. 

 

Dex treatment restricts the generation of NCCs from neural tube explant cultures 

We isolated explants from the chick neural tube and cultured them in the presence or absence 

of 10-6 M Dex for 18 hours (Figs. 6A-B). There were fewer NCCs emanating from the neural 

tube explants in the Dex-treated explants than in controls (Control: 0.869 ± 0.021, n = 8; Dex: 

0.587 ± 0.032, n = 8; P = 0.000; Figs. 6A1-A3, B1-B3, C). We demonstrated that the majority 

of the cells emanating from the neural tube were NCCs due to expression of HNK-1(Figs. 

6A2-A3, B2-B3). In addition, the scratch wound assay showed that Dex exposure inhibited 
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HEK293 cell migration, which was reflected in the migratory distance of “wound” closure 

between the control and Dex-treated groups after 48 hours incubation (12h-Control: 341.932 

± 4.536 μm, n = 6; Dex: 242.690 ± 2.239 μm, n = 6; P = 0.000; 24h-Control: 393.612 ± 7.395 

μm, n = 6; Dex: 270.695 ± 6.437 μm, n = 6; P = 0.000; 36h-Control: 441.493 ± 6.237 μm, n = 

6; Dex: 335.413 ± 4.485 μm, n = 6; P = 0.000; 48h-Control: 468.000 ± 6.020 μm, n = 6; Dex: 

361.998 ± 4.338 μm, n = 6; P = 0.000; Figs. 6D-D3, E-E3, F). 

In order to investigate how Dex inhibits NCCs production, we performed in situ 

hybridization to detect the Msx1 expression. Dex treatment reduced Msx1 expression in the 

dorsal side of neural tubes compared to controls in both whole-mount preparations (Figs. 

7A-D) and transverse sections (Figs. 7B1-B2, D1-D2). In addition, using q-PCR, we also 

found that Dex treatment caused the reduction of EMT and cell migration-related genes 

including Msx1 (Control: 1.000 ± 0.077, n = 3; Dex: 0.577 ± 0.057, n = 3; P = 0.012), Bmp4 

(Control: 1.000 ± 0.085, n = 3; Dex: 0.455 ± 0.111, n = 3; P = 0.018), Slug (Control: 1.000 ± 

0.107, n = 3; Dex: 0.598 ± 0.056, n = 3; P = 0.029), RhoB (Control: 1.000 ± 0.059, n = 3; Dex: 

0.564 ± 0.116, n = 3; P = 0.029), Cadherin-6B (Control: 1.000 ± 0.104, n = 3; Dex: 0.568 ± 

0.079, n = 3; P = 0.029) and Laminin β2 (Control: 1.000 ± 0.113, n = 3; Dex: 0.491 ± 0.085, 

n = 3; P = 0.023), indicating that these gene expression suppressions may contribute to the 

abnormal cell development induced by Dex treatment. However, the expression of 

N-Cadherin (Control: 1.000 ± 0.044, n = 3; Dex: 1.919 ± 0.109, n = 3; P = 0.002) was 

up-regulated with Dex exposure (Figure 7E). 

 

DISCUSSION 
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Whether or not Dex treatment causes bone deformities remains a controversial issue. 

Glucocorticoid exposure was found to cause the osteogenic phenotype in fibrous dysplasia 

(Stanton et al., 1999). However, Bolt et al. reported that Dex treatment did not change the 

body composition in preterm infants when it was used to treat chronic lung disease (Bolt et 

al., 2002). Furthermore, Gilmour et al. demonstrated that Dex did not affect body 

composition of term gestational age infants despite the negative influences on glucose 

metabolism and growth patterns after drug exposure (Gilmour et al., 1995). Nevertheless, 

Dex exposure was shown to cause a high teratogenic risk in our previous experiments (Cheng 

et al., 2014; Cheng et al., 2016). Despite the awareness of potential teratogenicity, Dex 

remains in clinical practice during the perinatal and neonatal periods, in scenarios where 

better options are not available. The more we understand about the mechanisms of the 

numerous birth defects induced by Dex usage, the more we may be able to avoid the 

teratogenic effects of Dex in the future. 

Intramembranous ossification is the main form of osteogenesis of the craniofacial 

skeleton, where bone formation directly stems from mesenchymal cells. In addition, the 

mesenchymal cells in the cranial region are principally derived from CNC (Santagati and 

Rijli, 2003). In this study, we first found that exposing chick embryos to Dex caused 

deformities or absence of the maxillary bone, and increased the occurrence of shortened or 

curved coracoids (Figure 1). Maxillary derivatives continued to form, including jugal, 

quadratojugal, maxillary and palatal bones (MacDonald et al., 2004). The impairment or 

absence of the maxillary bone led to an asymmetric development of the palate, which 

subsequently resulted in curved coracoids. This demonstrated that there is suppression of 
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normal cranial bone formation when exposed to Dex. Meanwhile, the negative effects of Dex 

treatment may not be limited to osseous findings since delayed embryo development and high 

mortality rates were also found in the presence of Dex exposure (Figure 2). Therefore, it can’t 

be excluded that the shortened coracoids (shown in Figs. 1B, E) were associated with an 

overall developmental delay in the embryos. The complexity of embryogenesis means that 

minor anomalies or delays during development can result in severe malformations. 

Due to the abnormal cranial bone formation described in this study, we decided to study 

the process of CNC development of chick embryos in presence/absence of Dex using in vivo 

and in vitro models. CNCCs are multipotent progenitor cells that are capable of 

differentiating into numerous types of tissue derivatives. We assessed the CNC production in 

developing chick embryos (Figure 3). Additionally, we demonstrated that Dex exposure 

suppressed the amount of HNK-1+, PAX7+ and AP-2α+ NCCs at an early chick embryonic 

stage (Figure 3), which indicates that Dex exposure interferes with the process of generation 

(PAX7+) and migration (HNK-1+) of CNCCs (AP-2α+). This also implies that Dex-induced 

defects in the maxillary bones of the skull might at least partially be due to the poor 

production of CNC. Prior in vitro experimental evidence revealed that glucocorticoid 

hormones could induce catecholamine anabolism in various adrenergic derivatives of the 

neural crests (Smith and Fauquet, 1984). The differences between that report and our 

observations in this study are likely because of the different microenvironments of in vitro 

compared to in vivo studies at the very early embryonic stages. This could be partially 

supported by observations from the development of the rat sympathetic nervous system in 

response to environmental stimuli (Teitelman et al., 1979). Another possible reason for these 
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differing results are the different embryonic developmental stage evaluated in this study. In 

their experiments, trunk neural crests explants taken from HH11-12 quail embryos were 

treated with glucocorticoids before migration had begun, while the earlier HH4 chick 

embryos were exposed to Dex in our experiments. However, whether it is the differentiating 

process from NCCs into mesenchymal cells or the subsequent process of osteogenesis that is 

impaired by Dex treatment still needs to be studied. 

Besides pre-migration/migration and differentiation of the CNC, cell proliferation and 

apoptosis are also involved in the neural crest development. Therefore, we further evaluated 

the effect of Dex treatment on cell proliferation and apoptosis using double-labeled NCCs 

with either pHIS3/PAX7 or c-Caspase3/AP-2α (Figure 4). We found that Dex treatment did 

not greatly affect cell proliferation (pHIS3+/PAX7+), but it promoted cell apoptosis 

(c-Caspase3+/AP-2α+), suggesting that CNC are more susceptible to apoptosis rather than to 

decreased cell proliferation when exposed to Dex during the early developmental stage. 

Meanwhile fewer AP-2α+ cells were seen in the Dex-treated embryos, which also implied 

that CNC production was affected. Our observations in the CNC are generally consistent with 

reports from sheep placenta, where Dex treatment acts as an imbalance factor for placental 

survival and apoptosis during development (Braun et al., 2015).  

Given our observed Dex-induced alteration of CNC generation, we would like to further 

explore whether or not Dex treatment could affect the known signaling pathways that play a 

crucial role during organization of cranial skeleton (Mishina and Snider, 2014). The 

molecular mechanisms inducing chondrogenesis and osteogenesis in CNC, are 

cranial-specific pathways which are distinct from those operating in mesodermal cells, which 
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produce the remainder of the skeleton. Nonetheless, Fgf molecules are expressed at nearly 

every stage of bone formation within the craniofacial bones, the axial skeleton, and the limb 

bones (Kronenberg, 2003). Therefore, the expression of Fgf genes as well as neural plate 

markers were examined by in situ hybridization and q-PCR. Here, our results indicate that 

Dex treatment represses Fgf8 expression as well as Fgf10, Fgfr1, Fgfr3 and Sox2-3, and in 

turn blocking the FGF signaling with SU5402 inhibits the production of CNC (Figure 5), 

which suggests that Dex-induced disturbance of FGF signaling might be responsible for the 

abnormal CNC development.  

Another logical question is if the important signal-regulated events (delamination, EMT 

and migration) of NCCs generation are affected by Dex treatment. We demonstrated that 

fewer NCCs emigrated and with a lower migratory ability in the presence of Dex (Figure 6), 

indicating that the EMT from pre-migratory to migratory NCCs or migratory ability of NCCs 

are deleteriously affected by Dex treatment. The negative effects of Dex exposure, shown by 

neural tube in vitro explants and scratch assays, include both cell proliferation/apoptosis and 

migration. To further confirm this we subsequently assessed the expressions of EMT-related 

or cell migration-related genes. These results demonstrated reduced expressions of Msx1, 

Bmp4, Slug, RhoB, Cadherin-6B and Laminin β2 genes. However, there was an increase of 

N-Cadherin expression in the presence of Dex (Figure 7). Msx1 has been reported to 

modulate the EMT process in vertebrate organogenesis. Msx1-/- mice exhibit a number of 

craniofacial abnormalities including an arrest of tooth development, an absence of 

periodontal intramembranous bone and the alveolar process (Davidson, 1995; Satokata and 

Maas, 1994). Bmp4, a downstream target of Msx1, plays an important role in the initiation 
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and differentiation of NCCs as well as during alveolar bone formation (Zhang et al., 2003). 

Cadherin-6B (epithelial Cadherin-6B) is an adhesion molecule that is response for the EMT 

of chick CNC (Kerosuo and Bronner-Fraser, 2012). Together these data imply that Dex might 

directly or indirectly interfere with these EMT regulatory transcription factors, adhesion 

molecules and cell migration gene expressions. Thereby, inhibiting the EMT of CNC and 

causing normal migration to not properly occur. 

Taken together (Figure 8), we showed that there are developmental defects of the 

premaxilla when the early chick embryos were treated with Dex. Next, we revealed that Dex 

treatment inhibits the generation of CNC in early chick embryo development. The increase of 

NCC apoptosis in presence of Dex could partially explain the phenotype seen. In addition, 

abnormal expressions of EMT regulatory transcription factors, adhesion molecules and cell 

migration-related genes might also contribute to the phenotypes induced by Dex treatment. 

This study explored the causes of the abnormal generation of chick CNC, the progenitor cells 

for cranial osteogenesis, in the presence of Dex treatment. Although, further work to describe 

the precise molecular biological mechanisms involved is required. 
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FIGURE LEGENDS 

FIG. 1. Dex exposure suppresses craniofacial skeleton development of chick embryos. 

18-hour pre-incubated chick embryos were exposed to 100 µL either Dex (10-6 M) or DMSO 
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(control) in vivo for 13 days. (A-C) Representative head lateral views of the control (A) and 

10-6 M Dex-treated (B-moderate deformity; C-severe deformity) chick embryos. (D-F) 

Representative head front views of the control and 10-6 M Dex-treated (E-moderate deformity; 

F-severe deformity) chick embryos. (G-I) Inferior (palatal) view after lower beak removed of 

the control (G) and 10-6 M Dex-treated (H-moderate deformity; I-severe deformity) embryos, 

stained with alizarin red. (G’-I’) High magnification images were taken from the sites 

indicated by dotted squares in G-I, respectively. (J) Bar chart showing the comparison of 

embryo survival rates between control and Dex-treated groups. (K) Bar chart showing the 

comparison of embryo weights between control and Dex-treated groups. (L) Bar chart 

showing the frequency of deformity between control and Dex-treated groups. Abbreviation: j, 

jugal; mx, maxillary bone; p, palatine bone; pp, palatine process of maxillary bone; pnc, 

prenasal cartilage; pmx, premaxilla; pt, pterygoid and qj, quadratojugal. White arrows in A 

and D indicated the coracoids. Black arrows in G’-I’ showed the normal, impaired and absent 

maxillary bone respectively. Scale bars = 0.5 mm in A-F and 1 mm in G-I, G’-I’. 

 

FIG. 2. Decreased growth of chick embryos occurs in presence of Dex. Chick embryos 

were exposed to DMSO or 10-6 M Dex for 18, 28 and 42 hours in EC culture. Ten embryos 

were assigned to each treatment group. (A-D) Representative bright-field images of chick 

embryos in the control group at 0h (A), 18h (B), 28h (C) and 42h (D). (E-H) Representative 

bright-field images of chick embryos in the Dex-treated group at 0h (E), 18h (F), 28h (G) and 

42h (H). (I) Bar chart showing the comparison of the embryo survival rates between control 

and Dex-treated groups. (J) Bar chart showing the comparison of embryo maturation rates at 
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different developmental time-points between control and Dex-treated groups. (K) Bar chart 

showing the comparison of embryo lengths (longitudinal axis) between control and 

Dex-treated groups developed to desired stage of HH10. Scale bars = 0.5 mm in A-H. 

 

FIG. 3. CNC production of chick embryos is suppressed by Dex exposure. Chick embryos 

were exposed to DMSO or 10-6 M Dex until HH10 and then immunofluorescently stained for 

HNK-1, PAX7 and AP-2α expression. (A-B) Embryo head images of bright-field (A) and 

HNK-1 fluorescent staining (B) in the control group. (B1-B2) Transverse sections produced 

from B as indicated by the dotted line. Sections were counterstained with DAPI (B2). (C-D) 

Embryo head images of bright-field (C) and HNK-1 fluorescent staining (D) in the 

Dex-treated group. (D1-D2) Transverse sections produced from D as indicated by the dotted 

line. Sections were counterstained with DAPI (D2). (E-F) Embryo head images of 

bright-field (E) and PAX7 fluorescent staining (F) in the control group. (F1-F2) Transverse 

sections produced from F as indicated by the dotted line. Sections were counterstained with 

DAPI (F2). (G-H) Embryo head images of bright-field (G) and PAX7 fluorescent staining (H) 

in the Dex-treated group. (H1-H2) Transverse sections produced from H as indicated by the 

dotted line. Sections were counterstained with DAPI (H2). (I-J) Embryo head images of 

bright-field (I) and AP-2α fluorescent staining (J) in control group. (J1-J2) Transverse 

sections produced from J as indicated by the dotted line. Sections were counterstained with 

DAPI (J2). (K-L) Embryo head images of bright-field (K) and AP-2α fluorescent staining (L) 

in Dex-treated group. (L1-L2) Transverse sections produced from L as indicated by the dotted 

line. Sections were counterstained with DAPI (L2). (M) Bar chart showing the comparisons 
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of HNK-1+ areas in the traverse sections between the control and Dex-treated embryos. (N-O) 

PAX7+ (N) and AP-2α+ (O) cell numbers in the traverse sections between the control and 

Dex-treated embryos. Scale bars = 100 µm in A-L and 50 µm in B1-B2, D1-D2, F1-F2, 

H1-H2, J1-J2, L1-L2. 

 

FIG. 4. Dex treatment promotes apoptosis of chick CNC. (A-D) Control (A-B) and 

Dex-treated (C-D) embryos were double immunofluorescently stained for pHIS3 (red) and 

PAX7 (green). A and C are bright-field while B and D are fluorescent images. (E-H) Control 

(E-F) and Dex-treated (G-H) embryos were double immunofluorescently stained for AP-2α 

(red) and c-Caspase3 (green). E and G are bright-field while F and H are fluorescent images. 

(B1, D1, F1, H1) The transverse sections were taken from the levels indicated by dotted lines 

in B, D, F and H respectively. (B2, D2, F2, H2) The B1, D1, F1 and H1 images merged with 

DAPI staining respectively. (B3, D3, F3, H3) High magnification images were taken from the 

sites indicated by dotted squares in B2, D2, F2 and H2 respectively. (I) Bar chart showing the 

comparison of the average cell numbers of PAX7 and pHIS3 double positive cells per section 

in control and Dex-treated embryos. (J) Bar chart showing the comparison of the average cell 

numbers of AP-2α and c-Caspase3 double positive cells per section in control and 

Dex-treated embryos. (K) Bar chart showing the comparison of the percentage of PAX7 and 

pHIS3 double positive cells to the PAX7 positive cells per section in control and Dex-treated 

embryos. (L) Bar chart showing the comparison of the percentage of AP-2α and c-Caspase3 

double positive cells to the PAX7 positive cells per section in control and Dex-treated 

embryos. White arrows in B3, D3 and F3 and H3 indicated the PAX7 and pHIS3 double 
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positive cells, AP-2α and c-Caspase3 double positive cells respectively. Scale bars = 100 µm 

in A-H and 50 µm in B1-B3, D1-D3, F1-F3, H1-H3. 

 

FIG. 5. Dex treatment restricts FGF signaling in the cranial neural tubes of chick 

embryos, and HNK-1+ CNCCs migration is suppressed by SU5402. (A-C) In situ 

hybridization was performed to detect Fgf8 expression in chick embryos, which were 

exposed to DMSO (control) (A) or Dex (C). (B, D) High magnification images were from the 

sites indicated by dotted squares in A and C, respectively. (B1, D1) Transverse sections of the 

stained embryos at levels indicated by dotted lines in B and D, respectively. (B2, D2) High 

magnification images from the sites indicated by dotted squares in B1 and D1, respectively. 

(E) q-PCR showing extent of Fgf8, Fgf10, Fgfr1, Fgfr2, Fgfr3, Sox2 and Sox3 expression in 

control and Dex-treated embryos. (F-G) Representative images of HNK-1 immunofluorescent 

staining in the cranial regions of SU5402-treated half-side chick embryos. F demonstrates 

bright-field image and G shows fluorescent image. (G1-G2) Transverse sections of the 

stained embryos were taken at the level indicated by dotted lines in G. G1 is the control side 

while G2 is the SU5402-treated side of the embryo. (H) Bar chart showing the comparison of 

the area of HNK-1+ staining in the control and SU5402-treated whole-mount embryos. (I) Bar 

chart showing the comparison of the area of HNK-1+ staining in the transverse sections of 

control and SU5402-treated embryos. Scale bars = 500 µm in A, C; 100 µm in B-B1, D-D1, 

F-G and 50 µm in B2, D2, G1-G2. 

 

FIG. 6. Dex treatment represses CNC production and migration in cranial neural tubes 
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explants. (A-B) Representative bright-field images of control (A) and Dex-treated (B) cranial 

neural tube explants cultured for 48 hours. (A1-B1) Higher magnification of bright-field 

image showing cells migrating out of the explants as indicated by dotted squares in control 

(A1) and Dex-treated group (B1). (A2-A3, B2-B3) Higher magnification of HNK-1 

fluorescent staining (A2, B2) and merged with DAPI (A3, B3) as indicated by dotted squares 

in in control and Dex-treated group. (C) Bar chart demonstrates the comparison of the ratio 

between area of HNK-1+ staining and total area in control and Dex-treated cranial neural tube 

explants. (D-E) Representative images of the scratch-wound assay in HEK293 cells at 0h 

incubation from the control (D) and Dex-treated (E). (D1-D3, E1-E3) Representative images 

of the scratch-wound assay in HEK293 cells at 24h (D1, E1), 36h (D2, E2) and 48h (D3, E3) 

incubation from the control and Dex-treated groups. (F) Bar charts showing the migratory 

distance of HEK293 cells along with incubation time in the presence or absence of Dex. 

Scale bars = 500 µm in A-B, D-D3, E-E3 and 100 µm in A1-A3, B1-B3. 

 

FIG. 7. Dex treatment inhibits EMT-related gene expressions of CNC. (A, C) In situ 

hybridization showing the extent of Msx1 expression in the cranial regions of control (A) and 

Dex-treated (C) embryos, respectively. (B, D) High magnification images were taken from 

the sites indicated by the dotted squares in A and C respectively. (B1-B2, D1-D2) Transverse 

sections (B1, D1) and higher magnification (B2, D2) images were taken from the levels 

indicated by dotted lines in B, D respectively. (E) q-PCR data showing the extent of Msx1, 

Bmp4, Slug, RhoB, Cadherin-6B, Laminin β2 and N-Cadherin mRNA expression in control 

and Dex-treated embryos. Scale bars =500 µm in A, C; 100 µm in B, D; 50 µm in B1-B1 and 
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D1-D2. 

 

FIG. 8. Model depicting the hypothesis for Dex treatment-induced dysplasia of CNC.  


