64 research outputs found

    Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3

    Get PDF
    The mechanism by which substrates for endoplasmic reticulum–associated degradation are retrotranslocated to the cytosol remains largely unknown, although ubiquitination is known to play a key role. The mouse γ-herpesvirus protein mK3 is a viral RING-CH–type E3 ligase that specifically targets nascent major histocompatibility complex I heavy chain (HC) for degradation, thus blocking the immune detection of virus-infected cells. To address the question of how HC is retrotranslocated and what role mK3 ligase plays in this action, we investigated ubiquitin conjugation sites on HC using mutagenesis and biochemistry approaches. In total, our data demonstrate that mK3-mediated ubiquitination can occur via serine, threonine, or lysine residues on the HC tail, each of which is sufficient to induce the rapid degradation of HC. Given that mK3 has numerous cellular and viral homologues, it will be of considerable interest to determine the pervasiveness of this novel mechanism of ubiquitination

    Human mucosal associated invariant T cells detect bacterially infected cells

    Get PDF
    Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtbuninfected individuals. Interestingly, these Mtb-reactive cells expressed the Va7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an "innate" T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection. © 2010 Gold et al

    Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection

    Get PDF
    Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection

    A Single Nucleotide in Stem Loop II of 5′-Untranslated Region Contributes to Virulence of Enterovirus 71 in Mice

    Get PDF
    BACKGROUND: Enterovirus 71 (EV71) has emerged as a neuroinvasive virus responsible for several large outbreaks in the Asia-Pacific region while virulence determinant remains unexplored. PRINCIPAL FINDINGS: In this report, we investigated increased virulence of unadapted EV71 clinical isolate 237 as compared with isolate 4643 in mice. A fragment 12 nucleotides in length in stem loop (SL) II of 237 5'-untranslated region (UTR) visibly reduced survival time and rate in mice was identified by constructing a series of infectious clones harboring chimeric 5'-UTR. In cells transfected with bicistronic plasmids, and replicon RNAs, the 12-nt fragment of isolate 237 enhanced translational activities and accelerated replication of subgenomic EV71. Finally, single nucleotide change from cytosine to uridine at base 158 in this short fragment of 5'-UTR was proven to reduce viral translation and EV71 virulence in mice. Results collectively indicated a pivotal role of novel virulence determinant C158 on virus translation in vitro and EV71 virulence in vivo. CONCLUSIONS: These results presented the first reported virulence determinant in EV71 5'-UTR and first position discovered from unadapted isolates

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment

    Get PDF
    Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd

    Growth of InGaN nanopyramid arrays on Si for potential photovoltaic applications

    No full text
    10.1016/j.jcrysgro.2015.03.017Journal of Crystal Growth42064-7

    Atorvastatin alleviates cardiomyocyte apoptosis by suppressing TRB3 induced by acute myocardial infarction and hypoxia

    Get PDF
    TRB3 (tribbles 3), an apoptosis-regulated gene, increases during endoplasmic reticulum stress. Hypoxia can induce inflammatory mediators and apoptosis in cardiomyocytes. However, the expression of TRB3 in cardiomyocyte apoptosis under hypoxia is not thoroughly known. We investigated the regulation mechanism of TRB3 expression and apoptosis induced by hypoxia in cardiomyocytes. Methods: An in vivo model of acute myocardial infarction (AMI) was applied in adult Wistar rats to induce myocardial hypoxia. Rat neonatal cardiomyocytes were subjected to 2.5% O2 to induce hypoxia. Results: The expression of TRB3 was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia. Hypoxia significantly enhanced TRB3 protein and mRNA expression. Adding c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA), tumor necrosis factor-α (TNF-α) antibody, and atorvastatin 30 minutes before hypoxia reversed the induction of TRB3 protein. A gel-shift assay showed the DNA-binding activity of growth arrest and DNA damage-inducible gene 153 (GADD153), which increased after hypoxia. Hypoxia increased, whereas the TRB3-mut plasmid, SP600125, and TNF-α antibody abolished the hypoxia-induced TRB3 promoter activity. Hypoxia increased the secretion of TNF-α from cardiomyocytes. Exogenous administration of TNF-α recombinant protein to the cardiomyocytes without hypoxia increased TRB3 protein expression, similar to that observed after hypoxia. Hypoxia-induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA, the TNF-α antibody, and atorvastatin. Atorvastatin reduced the TRB3 expression and cardiomyocyte apoptosis induced by AMI. Hypoxia induces TRB3 through TNF-α, JNK, and the GADD153 pathway. Conclusion: Treatment of atorvastatin inhibits the expression of TRB3 and cardiomyocyte apoptosis induced by AMI and hypoxia

    Processing and Properties of Construction Materials for 3D Printing

    No full text
    3D printing (3DP), commonly known as additive manufacturing (AM), is a promising technology that can fabricate three dimensional complex shape prototypes directly from computer-aided design (CAD) model without any tooling and human intervention. Owing to its peculiar characteristics, AM is widely used in many industries to assist in the design, manufacture and commercialization of a product. More recently, this technology has been extended to building and construction (B&C) application in order to mitigate some of the critical issues such as shortage of skilled labour, high production cost and construction time, health and safety concerns of the workers in the hazardous environment etc. However for successful implementation, proper selection of materials and their mix design is highly recommended, which is a challenging task. This paper summarizes the current available 3DP systems from literature and the respective materials that have been used thus far by various experts, industries for B&C purposes. Finally, the benchmarking properties of theses material and potential research directions are briefly discussed.NRF (Natl Research Foundation, S’pore)Accepted versio

    3D Printing for Sustainable Construction

    No full text
    Sustainability is interpreted as the effective use of resources as well as the preservation of the environment. A sustainable building is giving back to the environment more than it takes and ensuring that the resources is being used in an effective way that would benefit the community. A combination of smart design, efficient technology and designing buildings with sustainability in mind from the start of the designing phase is therefore necessary. 3D concrete printing can be a sustainable solution because of its ability to manufacture complex shapes to enable passive design thus reducing energy consumption. This article presents an overview on the sustainability of 3D concrete printing in terms of printable green materials as well as sustainable architectural design to achieve passive system.Accepted versio
    corecore