22,675 research outputs found

    Quantum percolation in quantum spin Hall antidot systems

    Get PDF
    We study the influences of antidot-induced bound states on transport properties of two- dimensional quantum spin Hall insulators. The bound statesare found able to induce quantum percolation in the originally insulating bulk. At some critical antidot densities, the quantum spin Hall phase can be completely destroyed due to the maximum quantum percolation. For systems with periodic boundaries, the maximum quantum percolationbetween the bound states creates intermediate extended states in the bulk which is originally gapped and insulating. The antidot in- duced bound states plays the same role as the magnetic field inthe quantum Hall effect, both makes electrons go into cyclotron motions. We also draw an analogy between the quantum percolation phenomena in this system and that in the network models of quantum Hall effect

    Investigation of the Finite Element Software Packages at KSC

    Get PDF
    The useful and powerful features of NASTRAN and three real world problems for the testing of the capabilities of different NASTRAN versions are discussed. The test problems involve direct transient analysis, nonlinear analysis, and static analysis. The experiences in using graphics software packages are also discussed. It was found that MSC/XL can be more useful if it can be improved to generate picture files of the analysis results and to extend its capabilities to support finite element codes other than MSC/NASTRAN. It was found that the current version of SDRC/I-DEAS (version VI) may have bugs in the module 'Data Loader'

    Surface and Edge States in Topological Semi-metals

    Get PDF
    We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films

    What a Nerd! Beating Students and Vector Cosine in the ESL and TOEFL Datasets

    Full text link
    In this paper, we claim that Vector Cosine, which is generally considered one of the most efficient unsupervised measures for identifying word similarity in Vector Space Models, can be outperformed by a completely unsupervised measure that evaluates the extent of the intersection among the most associated contexts of two target words, weighting such intersection according to the rank of the shared contexts in the dependency ranked lists. This claim comes from the hypothesis that similar words do not simply occur in similar contexts, but they share a larger portion of their most relevant contexts compared to other related words. To prove it, we describe and evaluate APSyn, a variant of Average Precision that, independently of the adopted parameters, outperforms the Vector Cosine and the co-occurrence on the ESL and TOEFL test sets. In the best setting, APSyn reaches 0.73 accuracy on the ESL dataset and 0.70 accuracy in the TOEFL dataset, beating therefore the non-English US college applicants (whose average, as reported in the literature, is 64.50%) and several state-of-the-art approaches.Comment: in LREC 201

    Nonequilibrium Structure of Colloidal Dumbbells under Oscillatory Shear

    Full text link
    We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics computer simulations. In particular, we extend previous investigations, where we uncovered novel nonequilibrium phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of strains and shear frequencies. We compare and discuss selected results in the context of novel scattering and rheological experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio

    Framework for state and unknown input estimation of linear time-varying systems

    Full text link
    The design of unknown-input decoupled observers and filters requires the assumption of an existence condition in the literature. This paper addresses an unknown input filtering problem where the existence condition is not satisfied. Instead of designing a traditional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is extended to solve the unknown input filtering problem. It is proved that the state and the unknown inputs can be estimated and decoupled using the extended Double-Model Adaptive Estimation approach without satisfying the existence condition. Numerical examples are presented in which the performance of the proposed approach is compared to methods from literature.Comment: This paper has been accepted by Automatica. It considers unknown input estimation or fault and disturbances estimation. Existing approaches considers the case where the effects of fault and disturbance can be decoupled. In our paper, we consider the case where the effects of fault and disturbance are coupled. This approach can be easily extended to nonlinear system
    corecore