189 research outputs found

    Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil

    Get PDF
    Application of sewage sludge compost (SSC) as a fertilizer on landscaping provides a potential way for the effective disposal of sludge. However, the response of landscape trees to SSC application and the impacts of heavy metals from SSC on soil are poorly understood. We conducted a pot experiment to investigate the effects of SSC addition on Mangifera persiciforma growth and quantified its uptake of heavy metals from SSC by setting five treatments with mass ratios of SSC to lateritic soil as 0%:100% (CK), 15%:85% (S15), 30%:70% (S30), 60%:40% (S60), and 100%:0% (S100). As expected, the fertility and heavy metal concentrations (Cu, Zn, Pb and Cd) in substrate significantly increased with SSC addition. The best performance in terms of plant height, ground diameter, biomass and N, P, K uptake were found i n S30, implying a reasonable amount of SSC could benefit the growth of M. persiciforma. The concentrations of Cu, Pb and Cd in S30 were insignificantly different from CK after harvest, indicating that M. persiciforma reduced the risk of heavy metal contamination of soil arising from SSC application. This study suggests that a reasonable rate of SSC addition can enhance M. persiciforma growth without causing the contamination of landscaping soil by heavy metals

    miR-590-3p protects against ischaemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating HMGB1/TLR4/MyD88/NF-κB signalling

    Get PDF
    miR-590-3p has been reported to be reduced in myocardial ischaemia-reperfusion (I/R) injury, but its specific role in cerebral I/R injury is still uncertain. Thus, we explored the function and mechanism of miR590-3p in cerebral I/R injury using a cellular model. miR-590-3p, high mobility group Box 1 (HMGB1), and signalling-related factor levels were assessed using qPCR or a western blot analysis. Cell apoptosis was measured by flow cytometry. Inflammatory factors were detected by ELISA. The target of miR-590-3p was confirmed by dual-luciferase reporter assay and western blot analysis. We found that miR-590-3p was decreased and HMGB1 was increased in the OGD/R model. Upregulation of miR-590-3p reduced cell apoptosis and inflammation in the OGD/R model, and the TLR4/MyD88/NF-κB signalling pathway was suppressed. However, inhibition of miR-590-3p showed the opposite effects. Moreover, HMGB1 was verified as a target gene of miR-590-3p. HMGB1 reversed the decrease in apoptosis and inflammation caused by overexpression of miR590-3p, and the TLR4/MyD88/NF-κB signalling pathway was activated. Our results suggest that miR-590-3p regulates the TLR4/MyD88/NF-κB pathway by interacting with HMGB1 to protect against OGD/R-induced I/R injury. Thus, miR-590-3p may serve as a potential therapeutic target in cerebral I/R repair

    Empowering International Students to Succeed : an Innovative and Beneficial Initiative for Health Professions

    Get PDF
    International students report higher sociocultural and academic stress when settling into a new university compared with their local counterparts. Three disciplines in the health professions collaborated to create a transition program addressing international student health and well-being in Australia. Commencing students and senior student mentors participated in a four-session program of activities to reflect on their current study/work practices and learn self-management strategies. They developed plans for coping with cultural, language, academic, and social barriers, and assisted in improving physical and mental health and well-being. Of the 26 participants who attended sessions, 15 participated in in-depth interviews. Facilitating adjustment, establishing relationships, gaining new skills and knowledge, and transforming beliefs and behavior were the four themes identified that captured and explicated the impact of the initiative. Although limited by the number of student participants, the program demonstrated a positive impact in creating a supportive learning environment for international students.</p

    Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization

    Get PDF
    We report the construction of a biodegradable macroporous scaffold with a nano-crystal surface microstructure capable of releasing bioactive ions for highly effective osteogenesis and vascularization.</p

    Safety and immunogenicity of a modified Omicron-adapted inactivated vaccine in healthy adults: a randomized, double-blind, active-controlled Phase III clinical trial

    Get PDF
    BackgroundUpdated vaccine strategies are needed to protect against new SARS-CoV-2 variants with increased immune escape. Here, information on the safety and immunogenicity of an inactivated Omicron-adapted vaccine is presented, as compared with CoronaVac.MethodsA randomized, double-blind, active-controlled, phase III clinical trial was conducted to compare a modified Omicron-adapted vaccine (Omicron vaccine) with the authorized prototype vaccine (CoronaVac®) as a booster dose. Healthy adults aged ≥18 years, who have previously received 2 or 3 doses of CoronaVac (2C or 3C cohort) at least 6 months before, were enrolled to get a booster dose of Omicron vaccine or CoronaVac in a ratio of 2:1 (2C/3C+1O/1C). Back-up serums after two initial doses of CoronaVac (2C+0) for adults aged 26-45 years were collected from a previous study. Immunogenicity and safety data at 28 days after vaccination were collected and analyzed. One of the primary objectives was to evaluate the superiority of immunogenicity of Omicron vaccine booster against Omicron BA.1, compared with CoronaVac booster against BA.1. Another objective was to evaluate the non-inferiority of immunogenicity of Omicron vaccine booster against BA.1, compared with two initial doses of CoronaVac against ancestral strain.ResultsBetween June 1st and July 21st, 2022, a total of 1,500 healthy adults were enrolled. Results show that all pre-specified superiority criteria for BA.1 neutralizing antibody were met. Specifically, within the 3C cohort (3C+1O vs. 3C+1C), the geometric mean titers’ (GMT) ratio and 95% confidence interval (CI) was 1.64 (1.42, 1.89), with the lower 95%CI ≥1; a GMT ratio of 1.84 (1.57, 2.16) was observed for 2C+1O versus 3C+1C. For seroconversion rate, the lower 95%CIs of differences between immuno-comparative groups (2/3C+1O vs. 3C+1C) were all above the superiority criterion 0%. However, the non-inferiority criterion of the lower 95%CI of GMT ratio ≥2/3 was unfulfilled for 2C/3C+1O against BA.1 versus 2C+0 against ancestral strain. Safety profiles were similar between groups, with no safety concerns identified.ConclusionThe Omicron-adapted vaccine was well-tolerated and could elicit superior immune responses as compared with CoronaVac against Omicron, while it appeared inferior to CoronaVac against ancestral strain.Clinical trial registrationhttps://classic.clinicaltrials.gov/ct2/show/NCT05381350?term=NCT05381350&amp;draw=2&amp;rank=1, identifier NCT05381350

    Doublecortin-Expressing Cells Persist in the Associative Cerebral Cortex and Amygdala in Aged Nonhuman Primates

    Get PDF
    A novel population of cells that express typical immature neuronal markers including doublecortin (DCX+) has been recently identified throughout the adult cerebral cortex of relatively large mammals (guinea pig, rabbit, cat, monkey and human). These cells are more common in the associative relative to primary cortical areas and appear to develop into interneurons including type II nitrinergic neurons. Here we further describe these cells in the cerebral cortex and amygdala, in comparison with DCX+ cells in the hippocampal dentate gyrus, in three age groups of rhesus monkeys: young adult (12.3 ± 0.2 years, n = 3), mid-age (21.2 ± 1.9 years, n = 3) and aged (31.3 ± 1.8 years, n = 4). DCX+ cells with a heterogeneous morphology persisted in layers II/III primarily over the associative cortex and amygdala in all groups (including in two old animals with cerebral amyloid pathology), showing a parallel decline in cell density with age across regions. In contrast to the cortex and amygdala, DCX+ cells in the subgranular zone diminished in the mid-age and aged groups. DCX+ cortical cells might arrange as long tangential migratory chains in the mid-age and aged animals, with apparently distorted cell clusters seen in the aged group. Cortical DCX+ cells colocalized commonly with polysialylated neural cell adhesion molecule and partially with neuron-specific nuclear protein and γ-aminobutyric acid, suggesting a potential differentiation of these cells into interneuron phenotype. These data suggest a life-long role for immature interneuron-like cells in the associative cerebral cortex and amygdala in nonhuman primates

    Structural Insights Into Ligand Recognition and Selectivity of Somatostatin Receptors

    Get PDF
    Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs
    corecore