56 research outputs found
Aligning the Measurement of Microbial Diversity with Macroecological Theory
The number of microbial operational taxonomic units (OTUs) within a community is akin to species richness within plant/animal (“macrobial”) systems. A large literature documents OTU richness patterns, drawing comparisons to macrobial theory. There is, however, an unrecognized fundamental disconnect between OTU richness and macrobial theory: OTU richness is commonly estimated on a per-individual basis, while macrobial richness is estimated per-area. Furthermore, the range or extent of sampled environmental conditions can strongly influence a study's outcomes and conclusions, but this is not commonly addressed when studying OTU richness. Here we (i) propose a new sampling approach that estimates OTU richness per-mass of soil, which results in strong support for species energy theory, (ii) use data reduction to show how support for niche conservatism emerges when sampling across a restricted range of environmental conditions, and (iii) show how additional insights into drivers of OTU richness can be generated by combining different sampling methods while simultaneously considering patterns that emerge by restricting the range of environmental conditions. We propose that a more rigorous connection between microbial ecology and macrobial theory can be facilitated by exploring how changes in OTU richness units and environmental extent influence outcomes of data analysis. While fundamental differences between microbial and macrobial systems persist (e.g., species concepts), we suggest that closer attention to units and scale provide tangible and immediate improvements to our understanding of the processes governing OTU richness and how those processes relate to drivers of macrobial species richness
Recommended from our members
Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites
Sphagnum mosses dominate peatlands by employing harsh ecosystem tactics to prevent vascular plant growth and microbial degradation of these large carbon stores. Knowledge about Sphagnum-produced metabolites, their structure and their function, is important to better understand the mechanisms, underlying this carbon sequestration phenomenon in the face of climate variability. It is currently unclear which compounds are responsible for inhibition of organic matter decomposition and the mechanisms by which this inhibition occurs. Metabolite profiling of Sphagnum fallax was performed using two types of mass spectrometry (MS) systems and 1H nuclear magnetic resonance spectroscopy (1H NMR). Lipidome profiling was performed using LC-MS/MS. A total of 655 metabolites, including one hundred fifty-two lipids, were detected by NMR and LC-MS/MS-329 of which were novel metabolites (31 unknown lipids). Sphagum fallax metabolite profile was composed mainly of acid-like and flavonoid glycoside compounds, that could be acting as potent antimicrobial compounds, allowing Sphagnum to control its environment. Sphagnum fallax metabolite composition comparison against previously known antimicrobial plant metabolites confirmed this trend, with seventeen antimicrobial compounds discovered to be present in Sphagnum fallax, the majority of which were acids and glycosides. Biological activity of these compounds needs to be further tested to confirm antimicrobial qualities. Three fungal metabolites were identified providing insights into fungal colonization that may benefit Sphagnum. Characterizing the metabolite profile of Sphagnum fallax provided a baseline to understand the mechanisms in which Sphagnum fallax acts on its environment, its relation to carbon sequestration in peatlands, and provide key biomarkers to predict peatland C store changes (sequestration, emissions) as climate shifts.Microbiomes in Transition; Office of Biological and Environmental ResearchOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The m etabolite, p rotein, and l ipid ex traction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro , and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample
An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?
High-resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive-ion and negative-ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative- and positive-ion modes over a wide range of m/z values and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance-weighted average indices (H/C, O/C, aromaticity, and m/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments
Recommended from our members
Organic amendments change soil organic C structure and microbial community but not total organic matter on sub-decadal scales
Organic C has many benefits for soil, but it is depleted by tillage and crop harvest, and especially so for biofuel crops. Accordingly, strategies such as partially retaining stover or planting a cover crop can help ameliorate the negative effect of C removal. We used a long-term field experiment to study the impacts of stover retention and planting a cover crop on soil organic matter (SOM), its extractable components, and the soil microbial community. SOM chemical composition characterization was determined by electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in sequential water, methanol (MeOH), and chloroform (CHCl3) extracts. The characteristics of the soil bacterial community were measured by phospholipid fatty acid (PLFA), real-time quantitative PCR, and 16S rRNA gene sequence. The variations in total SOM content, total microbial biomass, and bacterial population were slight among treatments, but SOM chemical compounds, arbuscular mycorrhizal fungi (AMF) biomass, and bacterial structure changed significantly, and especially so in the coupled application of stover retention and cover crop. Specifically, stover retention enriched more lignin-like compounds in soil, whereas cover crop enriched more condensed hydrocarbons, and had more compounds with an aromaticity index (AI) > 0.5. The bacterial community was not altered by the cover crop, but the corn stover retention increased the relative abundances of Myxococcales (Deltaproteobacteria) and decreased that of Actinobacteria. Redundancy analysis (RDA) further revealed that the bacterial community in the stover treatments had a significant positive association with CHCl3-extracted chemical classes, i.e. unsaturated hydrocarbons and lipids, with the coupled application (stover and cover crop), and lignin and proteins with the corn stover only treatment. Taken together, our study shows how different C addition practices influence the molecular composition of SOM and the structure of soil microbial communities.24 month embargo; published online 5 September 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Disturbance triggers non-linear microbe–environment feedbacks
Conceptual frameworks linking microbial community membership, properties, and processes with the environment and emergent function have been proposed but remain untested. Here we refine and test a recent conceptual framework using hyporheic zone sediments exposed to wetting–drying transitions. Our refined framework includes relationships between cumulative properties of a microbial community (e.g., microbial membership, community assembly properties, and biogeochemical rates), environmental features (e.g., organic matter thermodynamics), and emergent ecosystem function. Our primary aim was to evaluate the hypothesized relationships that comprise the conceptual framework and contrast outcomes from the whole and putatively active bacterial and archaeal communities. Throughout the system we found threshold-like responses to the duration of desiccation. Membership of the putatively active community – but not the whole bacterial and archaeal community – responded due to enhanced deterministic selection (an emergent community property). Concurrently, the thermodynamic properties of organic matter (OM) became less favorable for oxidation (an environmental component), and respiration decreased (a microbial process). While these responses were step functions of desiccation, we found that in deterministically assembled active communities, respiration was lower and thermodynamic properties of OM were less favorable. Placing the results in context of our conceptual framework points to previously unrecognized internal feedbacks that are initiated by disturbance and mediated by thermodynamics and that cause the impacts of disturbance to be dependent on the history of disturbance
Using Macro- and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments
Exceptionally preserved fossils retain soft tissues and often the biomolecules that were present in an animal during its life. The majority of terrestrial vertebrate fossils are not traditionally considered exceptionally preserved, with fossils falling on a spectrum ranging from very well-preserved to poorly preserved when considering completeness, morphology and the presence of microstructures. Within this variability of anatomical preservation, high-quality macro-scale preservation (e.g., articulated skeletons) may not be reflected in molecular-scale preservation (i.e., biomolecules). Excavation of the Hayden Quarry (HQ; Chinle Formation, Ghost Ranch, NM, USA) has resulted in the recovery of thousands of fossilized vertebrate specimens. This has contributed greatly to our knowledge of early dinosaur evolution and paleoenvironmental conditions during the Late Triassic Period (~212 Ma). The number of specimens, completeness of skeletons and fidelity of osteohistological microstructures preserved in the bone all demonstrate the remarkable quality of the fossils preserved at this locality. Because the Hayden Quarry is an excellent example of good preservation in a fluvial environment, we have tested different fossil types (i.e., bone, tooth, coprolite) to examine the molecular preservation and overall taphonomy of the HQ to determine how different scales of preservation vary within a single locality. We used multiple high-resolution mass spectrometry techniques (TOF-SIMS, GC-MS, FT-ICR MS) to compare the fossils to unaltered bone from extant vertebrates, experimentally matured bone, and younger dinosaurian skeletal material from other fluvial environments. FT-ICR MS provides detailed molecular information about complex mixtures, and TOF-SIMS has high elemental spatial sensitivity. Using these techniques, we did not find convincing evidence of a molecular signal that can be confidently interpreted as endogenous, indicating that very good macro- and microscale preservation are not necessarily good predictors of molecular preservation
Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography
A new
approach for constant-distance mode mass spectrometry imaging
(MSI) of biological samples using nanospray desorption electrospray
ionization (nano-DESI) was developed by integrating a shear-force
probe with the nano-DESI probe. The technical concept and basic instrumental
setup, as well as the general operation of the system are described.
Mechanical dampening of resonant oscillations due to the presence
of shear forces between the probe and the sample surface enabled the
constant-distance imaging mode via a computer-controlled closed-feedback
loop. The capability of simultaneous chemical and topographic imaging
of complex biological samples is demonstrated using living Bacillus subtilis ATCC 49760 colonies on agar plates.
The constant-distance mode nano-DESI MSI enabled imaging of many metabolites,
including nonribosomal peptides (surfactin, plipastatin, and iturin)
on the surface of living bacterial colonies, ranging in diameter from
10 to 13 mm, with height variations up to 0.8 mm above the agar plate.
Co-registration of ion images to topographic images provided higher-contrast
images. Based on this effort, constant-mode nano-DESI MSI proved to
be ideally suited for imaging biological samples of complex topography
in their native states
Recommended from our members
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Coastal terrestrial-aquatic interfaces (TAIs) are dynamic zones of biogeochemical cycling influenced by salinity gradients. However, there is significant heterogeneity in salinity influences on TAI soil biogeochemical function. This heterogeneity is perhaps related to unrecognized mechanisms associated with carbon (C) chemistry and microbial communities. To investigate this potential, we evaluated hypotheses associated with salinity-associated shifts in organic C thermodynamics; biochemical transformations; and nitrogen-, phosphorus-, and sulfur-containing heteroatom organic compounds in a first-order coastal watershed on the Olympic Peninsula of Washington, USA. In contrast to our hypotheses, thermodynamic favorability of water-soluble organic compounds in shallow soils decreased with increasing salinity (43-867 mu S cm(-1)), as did the number of inferred biochemical transformations and total heteroatom content. These patterns indicate lower microbial activity at higher salinity that is potentially constrained by accumulation of less-favorable organic C. Furthermore, organic compounds appeared to be primarily marine- or algae-derived in forested floodplain soils with more lipid-like and protein-like compounds, relative to upland soils that had more lignin-, tannin-, and carbohydrate-like compounds. Based on a recent simulation-based study, we further hypothesized a relationship between C chemistry and the ecological assembly processes governing microbial community composition. Null modeling revealed that differences in microbial community composition - assayed using 16S rRNA gene sequencing - were primarily the result of limited exchange of organisms among communities (i.e., dispersal limitation). This results in unstructured demographic events that cause community composition to diverge stochastically, as opposed to divergence in community composition being due to deterministic selection-based processes associated with differences in environmental conditions. The strong influence of stochastic processes was further reflected in there being no statistical relationship between community assembly processes (e.g., the relative influence of stochastic assembly processes) and C chemistry (e.g., heteroatom content). This suggests that microbial community composition does not have a mechanistic or causal linkage to C chemistry. The salinity-associated gradient in C chemistry was, therefore, likely influenced by a combination of spatially structured inputs and salinity-associated metabolic responses of microbial communities that were independent of community composition. We propose that impacts of salinity on coastal soil biogeochemistry need to be understood in the context of C chemistry, hydrologic or depositional dynamics, and microbial physiology, while microbial composition may have less influence.US Department of EnergyUnited States Department of Energy (DOE) [DE-AC05-76RL01830]; DOE Office of Science User FacilityUnited States Department of Energy (DOE); Office of Biological and Environmental Research; Laboratory Directed Research and Development Program at PNNLOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …