1,000 research outputs found

    Heterogenization of Photochemical Molecular Devices: Embedding a Metalā€“Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer

    Get PDF
    Application of a molecular catalyst in artificial photosynthesis is confronted with challenges such as rapid deactivation due to photodegradation or detrimental aggregation in harsh conditions. In this work, a metal-organic cage [Pd-6(RUL3)(8)](28+) (MOC-16), characteristic of a photochemical molecular device (PMD) concurrently integrating eight Ru2+ light-harvesting centers and six Pd2+ catalytic centers for efficient homogeneous H-2 production, is successfully heterogenized through incorporation into a metal-organic framework (MOF) of ZIF-8 and then transformed into a carbonate matrix of Zn-x(MeIm)(x)(CO3)(x) (CZIF), leading to hybridized MOC-16@CZIF. This MOC@MOF integrated photocatalyst inherits a highly efficient and directional electron transfer in the picosecond domain of MOC-16 and possesses one order increased microsecond magnitude of the triplet excited-state electron in comparison to that of the primitive MOC-16. The carbonate CZIF matrix endows MOC-16@CZIF with water wettability, serving as a proton relay to facilitate proton delivery by virtue of H2O as proton carriers. Electron transfer during the photocatalytic process is also enhanced by infiltration of a sacrificial agent of BIH into the CZIF matrix to promote conductivity, owing to its strong reducing ability to induce free charge carriers. These synergistic effects contribute to the extra high activity for H-2 generation, making the turnover frequency of this heterogeneous MOC-16@CZIF photocatalyst maintain a level of similar to 0.4 H-2.s(-1), increased by 50-fold over that of a homogeneous PMD. Meanwhile, it is robust enough to tolerate harsh reaction conditions, presenting an unprecedented heterogenization example of homogeneous PMD with a MOF-derived matrix to mimic catalytic features of a natural photosystem, which may shed light on the design of multifunctional PMD@MOF materials to expand the number of molecular catalysts for practical application in artificial photosynthesis

    Postchallenge responses of nitrotyrosine and TNF-alpha during 75-g oral glucose tolerance test are associated with the presence of coronary artery diseases in patients with prediabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis has demonstrated an exponential relationship between 2-hr postchallenge hyperglycemia and coronary artery disease (CAD). Pulsatile hyperglycemia can acutely increase proinflammatory cytokines by oxidative stress. We hypothesized that postchallenge proinflammatory and nitrosative responses after 75 g oral glucose tolerance tests (75 g-OGTT) might be associated with CAD in patients without previously recognized type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Serial changes of plasma glucose (PG), tumor necrosis factor-alpha (TNF-Ī±), interleukin-6 (IL-6) and nitrotyrosine levels were analyzed during 75 g-OGTT in 120 patients (81 male; age 62 Ā± 11 years) before coronary angiography. Patients were classified as normal (NGT; 42%), impaired (IGT; 34%) and diabetic (T2DM; 24%) glucose tolerance by 75 g-OGTT.</p> <p>Results</p> <p>Postchallenge hyperglycemia elicited TNF-Ī±, IL-6 and nitrotyrosine levels time-dependently, and 2-hr median levels of TNF-Ī± (7.1 versus 6.4 pg/ml; <it>P </it>< 0.05) and nitrotyrosine (1.01 versus 0.83 <it>Ī¼</it>mol/l; <it>P </it>< 0.05), but not IL-6 or PG, were significantly higher in patients with CAD in either IGT or T2DM groups. After adjusting risk factors and glucose tolerance status, 2-hr nitrotyrosine in highest quartiles (OR: 3.1, <it>P </it>< 0.05) remained an independent predictor of CAD by logistic regression analysis.</p> <p>Conclusions</p> <p>These results highlight postchallenge proinflammatory and nitrosative responses by 75 g-OGTT, rather than hyperglycemia <it>per se</it>, are associated with CAD in patients without previous recognized diabetes.</p

    Tau PET With 18F-THK-5351 Taiwan Patients With Familial Alzheimer's Disease With the APP p.D678H Mutation

    Get PDF
    Background: Brain 18F-AV-45 amyloid positron emission tomography (PET) in Taiwanese patients with familial Alzheimer's disease with the amyloid precursor protein (APP) p.D678H mutation tends to involve occipital and cerebellar cortical areas. However, tau pathology in patients with this specific Taiwan mutation remains unknown. In this study, we aimed to study the Tau PET images in these patients.Methods: Clinical features, brain magnetic resonance imaging/computed tomography (MRI/CT), and brain 18F-THK-5351 PET were recorded in five patients with the APP p.D678H mutation and correlated with brain 18F-AV-45 PET images. We also compared the tau deposition patterns among five patients with familial mild cognitive impairment (fMCI), six patients with sporadic amnestic mild cognitive impairment (sMCI), nine patients with mild to moderate dementia due to Alzheimer's disease (AD), and 12 healthy controls (HCs). All of the subjects also received brain 18F-AV-45 PET.Results: The nine patients with sAD and six patients with sMCI had a positive brain AV-45 PET scans, while the 12 HCs had negative brain AV-45 PET scans. All five patients with fMCI received a tau PET scan with the age at onset ranging from 46 to 53 years, in whom increased standard uptake value ratio (SUVR) of 18F-THK-5351 was noted in all seven brain cortical areas compared with the HCs. In addition, the SUVRs of 18F-THK-5351 were increased in the frontal, medial parietal, lateral parietal, lateral temporal, and occipital areas (P &lt; 0.001) in the patients with sAD compared with the HCs. The patients with fMCI had a significant higher SUVR of 18F-THK-5351 in the cerebellar cortex compared to the patients with sMCI. The correlations between regional SUVR and Mini-Mental State Examination score and between regional SUVR and clinical dementia rating (sum box) scores within volumes of interest of Braak stage were statistically significant.Conclusion: Tau deposition was increased in the patients with fMCI compared to the HCs. Increased regional SUVR in the cerebellar cortical area was a characteristic finding in the patients with fMCI. As compared between amyloid and tau PET, the amyloid deposition is diffuse, but tau deposition is limited to the temporal lobe in the patients with fMCI

    Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Get PDF
    Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA

    Tellurium substitution effect on superconductivity of the alpha-phase Iron Selenide

    Full text link
    We have carried out a systematic study of the PbO-type compound FeSe_{1-x}Te_x (x = 0~1), where Te substitution effect on superconductivity is investigated. It is found that superconducting transition temperature reaches a maximum of Tc=15.2K at about 50% Te substitution. The pressure-enhanced Tc of FeSe0.5Te0.5 is more than 10 times larger than that of FeSe. Interestingly, FeTe is no longer superconducting. A low temperature structural distortion changes FeTe from triclinic symmetry to orthorhombic symmetry. We believe that this structural change breaks the magnetic symmetry and suppresses superconductivity in FeTe.Comment: Some typing errors are corrected; we take out one figures, now the paper has 14 pages, 5 figure

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
    • ā€¦
    corecore