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1. Introduction 

Taiwan is located between Euro-Asian and Philippines tectonic plates on the Pacific 

Earthquake Rim; therefore, Taiwan has suffered from the threatening of moderate 

earthquakes for a long time. The earthquake usually caused tremendous damages to human 

beings and these irreversible damages include loss of human lives, public and private 

properties, as well as huge adverse economic impacts. It is very difficult to avoid the 

damages caused by earthquake due to its widely destructive power. However, if people can 

receive the warning for the coming of the earthquake even by only a few seconds, the 

damages can be reduced due to possible appropriate reaction. The earthquake early 

warning system (EEWS) makes it possible to issue warning alarm before the arrival of S-

wave (severe shaking) and then to provide sufficient time for quick response to prevent or 

reduce casualty and damages.  
The idea of EEWS was originated in the U.S. (Cooper, 1868) based on the principle that 
transmission of the electronic signal is faster than the earthquake wave, and the typical 
research project goes ahead mainly in the California. Up to now, there are three types 
Earthquake Early Warning System (EEWS). The first type is based on the earthquake 
locating of local seismometer network systems, the second type is based on an on-site 
warning of a single seismometer, and the third type is a mixed combination of the first two 
types. The first type EEWS is a traditional seismological method which locate earthquake, 
determine magnitude using local seismometer network readings then estimate strong 
ground motion for other sites. In 1985, the very beginning of Personal Computer (PC) era, 
Heaton proposed a seismic computerized alert network model which will provide short-
term warning (tens of seconds) for large epicentral distance region while a major earthquake 
happen. In Japan, Prof. Hakuno showed an idea of the earthquake early warning at an 
earlier stage. Also, JR's UrEDAS (Nakamura, 1988) is famous for their practical system. 
However, most seismic networks in the world cannot reach such goal. During the 1994 
Northridge, 1995 Kobe earthquakes, seismic center took 30 minutes to hours to locate 
earthquakes. In 1999 921 Chi-Chi Taiwan earthquake, the critical information was 
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determined within 102 seconds. Since then, this type EEWS become mature and 
applicable. In 2007, Japan announced to public the first EEWS system in the world that 
can commercially provide earthquake warning information before the large S-wave 
amplitude arrives. The Real-time Earthquake Information by JMA is based on the source 
information as a point source and therefore the accuracy of the predicted ground motion 
is limited especially for a large scale earthquake. However, the limitation of first type 
EEWS produces a large blind zone where no warning will be received before S-wave 
arrives. Therefore the second type EEWS (on-site) is designed for such region. The third 
type EEWS is a hybrid use of regional and on-site warning methods. Although there is no 
real practical example, this is a reasonable research direction because the limitations of the 
first two types EEWS is somehow complementary. The regional EEWS is accurate but 
slow, the on-site EEWS is fast but less accurate. In this chapter, the development of the on-
site EEWS for Taiwan is introduced.  As part of the total solution of seismic hazard 
mitigation, an on-site earthquake early warning system (EEWS) has been developed for 
Taiwan. It provides time-related information including the magnitude of the earthquake, 
the expected arrival time of strong shaking, the seismic intensity and the peak ground 
acceleration (PGA) of the shaking, the dominant frequency of the earthquake and the 
estimation of structural response. 
The development of the on-site EEWS is divided into 2 stages. The 1st stage provides a basic 

prediction of the earthquake, and in the 2nd stage the response of the structure is estimated. 

In the 1st stage, the P-wave predicated PGA method and neural networks were used to 

model the nonlinearities caused by the interaction of different types of earthquake ground 

motion and the variations in the geological media of the propagation path, and learning 

techniques were developed for the analysis of the earthquake seismic signal. The earthquake 

characteristics (PGA, amplitude, arriving time and dominate frequency… etc.) were then 

predicted at stage I. In the 2nd stage, two different approaches are used to satisfy the 

different demands for the rapid estimation of structural responses. Both modules can 

estimate the structural response rapidly using the output of the first stage. This rapid-

estimation of structural response modulus can do the estimation online in a very short time. 

The user can get more information about what will happened in the coming earthquake. For 

different type of usage, two different modules are developed. The general modulus, which 

only uses the common data of the structure (height, structure type, floor, address …etc), is 

proposed to provide a low-cost, general-application and rapid estimation of the structural 

responses. For the user who needs more accurate and detail estimation of structural 

response, such as the hi-tech facilities, hi-raised building, power plant …etc. The customized 

modulus (scenario-based response predictor) provides a more accurate and detailed 

structural response estimation. Moreover, it can connected to the automatic control system, 

do the adequate decision under different levels of structural responses. With this 

customized modulus, the economic loss will be dramatically reduced. In order to build the 

two rapid estimation of the structural responses modulus, a wide range of real structural 

response data are needed. Only with these data, both modulus can be generated and 

verified. In this study, the Tai-Power building is used as the target structure; the refined 

FEM model is build by using FEM analysis software PISA3D. The recorded data of the 

structural responses from the CWB are used to refine the FEM model. After that, more than 

50 on-site data and 200 free-field data are used as inputs in the FEM analysis. All the 

simulated structural responses from the FEM are collected into the database. This database 
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not only can be used in the development rapid estimation of the structural responses 

modulus, but also can be used in the structural health monitoring studies. By utilizing the 

large database collected by the Central Weather Bureau (CWB), rapid and precise results can 

be obtained after any major earthquake. In addition, the customized modulus can also 

include the actuation system, which can automatically respond and reduce the economic 

losses due to the earthquake.  

The neural network models are applied during this development of the on-site EEWS in 
both stages. These neural networks are used to analyse the first-arrival of the earthquake 
signals in as early as 3 seconds after the first ground motion is registered by the sensors at a 
rate of 50 samples per second. Then, the on-site EEWS instantaneously provides a profile of 
information consisting of the estimates of the hazard parameters at the 1st stage and the 
structure response at the 2nd stage. The system is trained using the seismogram data from 
2371 earthquakes recorded in Taiwan. By producing accurate and informative warnings, the 
system has shown the potential to significantly minimize the hazards caused by the 
catastrophic earthquake ground motions.  

2. On-site earthquake early warning system for Taiwan 

The EEWS were expected to work efficiently at the sites with certain distance from the 

epicenter of the earthquake and also from the observation point where the earthquake 

motion (P-wave) is firstly observed. However, the EEWS was classified into ‘on-site 

warning’ and ‘regional warning’ by Kanamori (2003). Since 2007, Japan Meteorological 

Agency (JMA) began the general operation of the real-time earthquake information, which 

is composed of earthquake occurring time and hypocenter information (the magnitude 

and the earthquake location) and is expected to provide warning and to substantially 

reduce the human and physical damage for earthquakes. The EEWS by JMA could be 

called as ‘national warning’ due to the use of JMA-NIED system (nationwide earthquake 

observation system). One of the technical limits is applicability to the near-source 

earthquakes. The ‘regional’ EEWS was proposed and developed first by utilizing the 

difference of the velocity for the beginning P-wave and destructive S-wave of the 

earthquake as well as the epicenter locating technology. If the earthquake epicenter can be 

located within several seconds, more response time for the sites with certain distance from 

the epicenter of the earthquake can be obtained. Although the velocity of the waves 

depends on density and elasticity of the medium penetrated, the typical speed for the P-

wave is around 5 km/sec and the speed for the S-wave is around 3 km/sec. If the area is 

far from the epicenter, say 100 kilometer, then we will have at most 15 seconds reaction 

time before the S-wave arrives if the sensor at the observation station was able to pick up 

the earthquake signal (P-wave) right away and locate the epicenter within 18 seconds, as 

shown in Eq.1. 

 100 (km) ÷ 3 (km/sec) – 18 (sec) = 15 (sec) (1) 

However, if the location is less than 50 kilometer from the epicenter of the earthquake, then 
the ‘regional’ (traditional) EEWS is almost useless since reaction time is less than one 
second. In the other words, there are so-called “blind zone”, where within the 50 kilometers 
radius from the epicenter, existed for the ‘regional’ EEWS. Therefore, the “on-site” EEWS 
has become increasingly important for areas located in the blind zone of the “regional” 
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EEWS. In addition, the effort to integrate the regional warning with on-site warning to 
become a more robust EEWS is noticed. 
The EEWS developed in Taiwan by Central Weather Bureau (CWB) is similar to the one by 
JMA with so-called ‘regional warning’ or ‘national warning’. While working with the sensor 
array from Taiwan Strong Motion Instrumentation Program (TSMIP), the EEWS was under 
testing by cooperative research institutes since 2006, but the warning is only useful for the 
area located outside the 50 km radius from the earthquake epicenter. Therefore the ‘on-site 
warning’ is needed for a near-source earthquake and the regional system has been 
developed comprising 6 observation points on a circle with radius of 30km around a nuclear 
power plant in Lithuania to save a lead time of 4-8 seconds. These systems do not use source 
information but a threshold value for issuing an alarm. In addition, the effort to integrate the 
regional warning with on-site warning to become a more robust EEWS is noticed.  
The on-site EEWS (EEWS), as part of the total solution of seismic hazard mitigation, was 
under development to provide a series of time related parameters such as the magnitude of 
the earthquake, the time until strong shaking begins, and the seismic intensity of the 
shaking (peak ground acceleration). Interaction of different types of earthquake ground 
motion and variations in the elastic property of geological media throughout the 
propagation path result in a highly nonlinear function. We use P-wave predicated PGA 
method and neural networks to model these nonlinearities and develop learning techniques 
for the analysis of earthquake seismic signal. This warning system is designed to analyze the 
first-arrival from the earthquake signals in as little as 3 seconds after first ground motion is  
 

 

Fig. 1. The framework of the 1st stage for the on-site EEWS 
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felt at the sensors at a rate of 50 samples per second. Then the EEWS instantaneously provide a 
profile consists of the estimates of hazard parameters, such as magnitude, dominate frequency, 
arrival time of S-wave, and maximum seismic intensity (peak ground acceleration, PGA). The 
system is trained using seismogram data from more than 1000 earthquakes recorded in 
Taiwan. The proposed EEWS can be integrated with distributed networks for site-specific 
applications. By producing accurate and informative warnings, the system has the potential to 
significantly minimize the hazards of catastrophe ground motion. (Figure 1) 

3. P-wave predicated PGA method 

The major concept of the second type EEWS (on-site) is that the beginning of ground motion 
recorded by local seismometer can be used to predict ensuing ground motion at the same 
site. This is based on the physics of earthquake rupture process. Big earthquakes will have 
larger rupture areas and will produce longer “period” than small earthquakes if the fault 
rupture velocities are similar for different size earthquakes. Kanamori review the theory 
(hereafter τc method). The definition is  
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Usually τ0 is taken as 3 seconds. The ratio of first 3 second velocity ground motion with 
respect to displacement ground motion is related to the “period” (τc) of the initial portion of 
an earthquake rupture process. The log(τc) verse Mw magnitude follows a linear trend 
which is useful for estimating earthquake magnitude for using only one single seismometer. 
Wu and Kanamori applied this method to Taiwan strong motion data and provided some 
useful regression results.  

   M=3.088log(τc)+5.300             (3) 

 log(Pd)=-3.801+0.722M-1.444log(R)               (4) 

Here Pd is the maximum absolute amplitude of first 3 seconds P-wave displacement 
waveform, R is the epicentral distance. The attenuation relationship used in this study is 
provided by Dr. Jean (NCREE, Taiwan). 

   PGA=0.00284exp(1.73306M)[R+0.09994exp(0.77185M)] (-2.06392)       (5) 

The practical computation flow is described as follows.  
1. Get the serial data from acceleration seismometer. 
2. Compute the data stream is triggered by an earthquake or not. 
3. If triggered, accumulate 3 seconds vertical component acceleration data. 
4. Remove the mean and trend from data. 
5. Integrate data into velocity and displacement. 
6. Compute τc from integrated velocity and displacement data, then estimate earthquake 

magnitude. 
7. Compute the maximum absolute amplitude of displacement data. 
8. Estimate the epicentral distance using magnitude and amplitude information. 
9. Compute the P-wave S-wave travel time difference. 
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10. Compute PGA from attenuation relationship by giving magnitude and distance. 
11. Issue earthquake warning based on the estimated PGA 
This algorithm has been used to test Taiwan strong motion acceleration data (95000 free 
field records). The success rate is approximate 60%. It also has been tested using building 
array data. The results show that the algorithm works well for seismometer installed in the 
basement or roof of buildings. This research result proofed that in the future application, the 
seismometer can be installed in any floor in a building and the prediction algorithm will not 
fail. Figures 2-5 show testing results using 1999 921 Chi-Chi Taiwan earthquake data 
recorded in the roof and basement of Taipower building which is a 26-floor with 3-floor 
underground structure.  
 

 

Fig. 2. Photo of Taipower building. 

 

 

Fig. 3. The estimated ground PGA (97 gal) using Taipower building basement recorded data 
is reasonable comparing with the neighborhood recorded ground PGA (red number). The 
estimated ground PGA using roof data is 61 gal which is not shown on map. 
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Fig. 4. The recorded 1999 921 earthquake data from the roof of Taipower building. 

 

 

Fig. 5. The recorded 1999 921 earthquake data from the basement of Taipower building. 

4. Neural network 

Neural networks, that possess a massively parallel structure, are well known as a 

biologically inspired soft computing tool. Their learning capabilities, which differ them from 

other mathematically formulated methods, are provided by the unique structure of neural 

networks and allow the development of neural network based methods for certain 

mathematically intractable problems.  Neural networks are formed by many interconnecting 

artificial neurons. Signals propagate along the connections and the strength of the 

transmitted signal depends on the numerical weights that are assigned to the connections. 

Each neuron receives signals from the incoming connections, calculates the weighted sum of 

the incoming signals, computes its activation function, and then sends signals along its 
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outgoing connections. Therefore, the knowledge learned by a neural network is stored in its 

connection weights. To solve difficult engineering problems, it is necessary to design a 

task-specific neural network. Therefore, the neural networks program developed by Lin 

using Fortran were used in this study. A combination of the Quick-Prop algorithm and the 

local adaptive learning rate algorithm were applied to the multiple-layer feed-forward 

(MLFF) neural networks to speed up the convergence rate of the networks. In addition, a 

mechanism to avoid over-training the neural networks for certain patterns, the developed 

algorithm was designed to monitor and equalize the influence of each pattern in the training 

case on the connection weights during each epoch. The average root-mean-square output 

error of the networks became lower while maintaining the generalization ability of the 

neural networks when using this adaptive process (Lin, 1999). The Neural Network has 

been applied to the ground motion prediction and generation since 1997. The previous 

researches shows that the neural network makes it possible to provide more accurate, 

reliable and immediate earthquake information for society by combining the national EEWS 

and to be applied to the advanced engineering application as well as planning of hazard 

mitigation  (Kuyuk and Motosaka, 2009). The on-site EEWS developed for Taiwan has used 

initial part of P-waveform measured in-situ and neural networks for forward forecasting of 

ground motion parameters (Magnitude, PGA, estimated arrival time for strong motion) 

before S-wave arrival. The estimated ground motion information can be used as warning 

alarm for earthquake hazard reduction. The validity and applicability of this method have 

been verified by using the CWB observation data sets of 2505 earthquakes occurred in 

Taiwan area. 

A state-of-the-art neural networks based methodology is presented for forward forecasting 

of ground motion parameters before S-wave arrival using initial part of P-waveform 

measured on-site. The estimated ground motion information can be used as warning alarm 

for earthquake damage reduction. The neural networks program developed by Lin using 

FORTRAN was used in this study. A combination of the quick-prop algorithm and the local 

adaptive learning rate algorithm were applied to the multiple layer feed-forward back-

propagation neural networks to speed up the learning of the networks (Lin, 1999). The 

supercomputer is also used to train the neural networks. The validity and applicability of 

the method have been verified using the CWB observation data sets of 1012 earthquakes 

occurred in Taiwan.  

Furthermore, a new concept of grouping neural networks called Expert Group Neural 

Network (EGNN) is also used in this study. The EGNN behaved like a group of experts, 

who grew up from different backgrounds with individual expertise, and were able to 

provide the appropriate comment when working together as a committee (Lin et al., 

2006).  The optimal solution among the comments will be chosen while solving this kind 

of problem. Eight feed forward back-propagation neural networks trained by different 

inputs constituted the EGNN as a committee of experts to provide the time related 

information from earthquake accelerograms. The architecture of each neural network 

among EGNN is set to be different. It consisted of one input layer with 450 to 1500 

neurons, two hidden layers and one output layer with 11 neurons (as shown in Fig.6). 

Each of the EGNN was used to analyze the relationship between the initial few seconds of 

the earthquake accelerogram and the earthquake waveform information of that specific 

earthquake. 
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Fig. 6. The architecture of neural networks NNT0-3~10 

The neural networks were used in both stages of the on-site EEWS development. At the first 

stage development of the on-site EEWS while the parametric analysis study was conducted, 

the P-wave predicated PGA method (Wu and Kanamori 2005) and the neural networks were 

used to provide a basic prediction of the earthquake information such as the earthquake 

magnitude, seismic intensity, peak ground acceleration, and arrival time of S-wave for free 

field. In addition, the neural networks were able to predict the arrival time of PGA. The 

proposed method has been verified its validity and applicability. Furthermore, the neural 

networks were used at the 2nd stage development of the on-site EEWS to predict the seismic 

intensity, peak acceleration, arrival time of S-wave, and arrival time of peak acceleration for 

the roof of the specific building (structure response). In the first stage, the EGNN were 

trained with the data from first 3 seconds to 10 seconds of the earthquake accelerograms 

separately,. The earthquake magnitude, PGA (seismic intensity), arrival time of S-wave and 

arrival time of PGA were predicted using the waveform data from in-situ sensors. In this 

case, when the real-time information measured from the in-situ sensors is verified as 

earthquake using 1 second of time history after the arrival of P-wave at the site, then the 

initial 3 seconds of the earthquake accelerogram (P-waveform) was used as the input for the 

neural network (NN:T-3) to estimate the magnitude of the earthquake, the PGA (seismic 

intensity) in three directions, and the arrival time of the S-wave as well as those of PGA. At 

the same time, the sensors are recording and the initial 4, 5, .., and up to 10 seconds of P-

waveform were used as the input for the neural networks (NN:T-4, NN:T-5, .., NN:T-10) to 

estimate the parameters for the on-site EEWS consequently. The best prediction was then 

chosen from these 8 results through certain optimization algorithm or time factor. The 

emergency response actions can be activated right after receiving the warning due to the 
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seismic intensity predicted for the site as well as the remaining time before the strong S-

wave or PGA occurred. 

The training and testing (validation) data were prepared using the earthquake 

accelerograms recorded through TSMIP in Taiwan from 1992 through 2006, the magnitude 

of these earthquake ranged from 4.0 to 8.0 on the Richter Scale. There are a total of 50149 

recorded accelerograms from 2505 earthquakes. Among them, the training data were 

randomly chosen using 40539 earthquake records (80% of the total) from 2371 recorded 

earthquakes while the test data were prepared using the remaining 9610 earthquake records 

(20% of the total) from 1012 recorded earthquakes 
 

 

Fig. 7. Comparison of the real and est. seismic intensity (NNT0-3) 

 

Fig. 8. Comparison of the real and est. arrival time for S-wave (NNT0-3) 
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(sec)

Figs. 7-8 compare the results of the prediction of seismic intensity as well as the arrival time 
of the S-wave for the model NN:T-3. The accuracy of the seismic intensity prediction (green 
area) is around 60% while the accuracy for the ± one degree seismic intensity (red, green and 
purple areas) is around 95% (Fig.3 R2=0.6977). Figure 4 shows that R2=0.28 as the accuracy 
for the estimated arrival time of the S-wave. If a tolerance of ±20% is considered feasible for 
warning people on the arrival time of S-Wave, then the accuracy is around 70%. 
Figs. 9-10 compare the results of the prediction of seismic intensity as well as the arrival time 
of the S-wave for the model NN:T-10. The accuracy of the seismic intensity prediction (green 
area) is around 68% while the accuracy for the ± one degree seismic intensity (red, green and 
purple areas) is around 98% (Fig.3 R2=0.7714). Figure 6 shows that R2=0.48 as the accuracy 
for the estimated arrival time of the S-wave. However, the accuracy rises up to around 80% 
within ±20% tolerance for the purpose of warning people. 
 

 

Fig. 9. Comparison of the real and est. seismic intensity (NNT0-10) 

 

Fig. 10. Comparison of the real and est. arrival time for S-wave (NNT0-10) 
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It has been found that the accuracy of the predicted peak ground motion is drastically 
improved compared the results of NN:T-10 to NN:T-3 since more earthquake information (7 
seconds more of earthquake accelerogram) is provided for the neural network (NN:T-10), as 
shown in Tables 1 and 2. However, the disadvantage for model NN:T-10 is 7 seconds loss of 
time. Therefore, the result from NN:T-3 is recommended for the purpose of hazard 
mitigation and emergency response as long as the precision requirement is tolerable for 
certain applications. Besides, the results of the neural networks can be improved if more 
earthquake records can be obtained and more training can be done.   
 

EQ Real T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 

A 4.75 10.00 6.77 7.41 9.36 5.84 5.79 9.24 4.59 

B 10.33 9.53 9.12 5.79 14.59 8.57 8.15 5.06 11.14 

C 9.29 5.85 6.44 9.93 5.98 7.84 5.78 5.29 8.98 

D 5.50 7.61 8.64 2.95 6.72 6.05 7.56 8.40 5.57 

E 6.79 8.85 11.07 11.36 9.98 10.35 10.38 10.08 6.58 

F 11.43 8.64 14.75 10.32 12.91 7.28 8.49 6.26 11.15 

G 5.07 3.29 3.51 4.31 4.37 5.13 4.13 4.68 5.47 

H 9.94 7.23 9.04 7.24 4.62 5.32 3.86 3.98 9.00 

I 8.99 9.19 9.40 6.52 11.09 4.94 7.71 9.49 8.43 

J 9.69 10.92 11.60 9.99 13.73 9.10 7.38 11.34 11.38 

K 8.18 8.19 5.16 3.74 4.38 7.02 4.60 8.33 7.42 

Table 1. Comparison of the arrival time for S-wave from the neural networks with several 
recorded earthquakes. (Unit: second) 

 

EQ Real T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 

A 2 2 3 2 2 2 3 3 2 

B 3 3 3 3 3 2 3 3 3 

C 2 2 2 3 3 2 2 2 2 

D 4 4 4 4 3 3 4 4 4 

E 2 3 3 3 2 2 2 3 2 

F 3 3 3 3 4 3 3 2 4 

G 3 3 4 3 3 3 3 2 3 

H 5 4 4 4 4 4 4 3 5 

I 4 4 4 3 4 4 4 4 4 

J 3 3 3 3 3 3 3 2 3 

K 3 3 3 3 3 3 3 3 3 

Table 2. Comparison of the seismic intensity from the neural networks with several recorded 
earthquakes. (Unit: degree) 
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5. Rapid estimation of the structural responses / general modulus  

In this section, the non-linear un-damped vibrations of an shear beam model subjected to a 

harmonic motion along its base are investigated. This model is applied to simulate the 

seismic responses of a building when peak ground acceleration (PGA) and earthquake 

significant frequency are predicted in part I. It is assumed that the linear part of the shear 

modulus of the building is uniform along the building height. Transforming the Ramberg-

Osgood model to a suitable for the relationship of the shear stress versus shear strain, a non-

linear partial differential equation is obtained as the governing equation. In the method 

presented here, the multi-story building is modelled as an equivalent continuum with non-

uniform stiffness consisting of a combination of a shear cantilever beam deforming in shear 

configurations. The base of this building model makes as harmonic horizontal motion 

Asin(wt). Since the height is normalized by the total building height and nonlinear 

deformations occur along the transverse horizontal direction. As a result, the governing 

equation can be written as 

 
   , ,x xzz t z t

t z

 

 


 

, ∀z∈(0,H),  t∈(-∞,+∞) (6) 

where  is the mass density, x(z,t) is the lateral velocity, z is the co-ordinate measured from 

the top and t is the time. Herein, the Ramberg-Osgood model is widely used as it can be 

transform to a suitable form for analytical solution. Rearranging this transformed model and 

considering the relationship between the shear stresses and strains, the non-linear stress-

strain relation can be written as  
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  , ∀z∈(0,H),  t∈(-∞,+∞) (7) 

where xz it the shear stress, Y it the yielding shear stress, G is the linear shear modulus 

and α is the post-yielding stiffness ratio. Then the equation of motion for the shear building 

model can be written as 

   
   , ,xz xzz t z t

t z

  


 
, ∀z∈(0,H),  t∈(-∞,+∞)   (8) 

The shear building is subjected to a harmonic motion Asin(wt) at the base and traction free 

at the top. Thus, the boundary conditions can be written as 

    0, 0xz t  , t∈(-∞,+∞) (9) 

      , sinx H t A t
t

 
    

, t∈(-∞,+∞)     (10) 

In this study, the response of the shear building is assumed to be harmonic with the period 

2/, as the forcing term. Thus the periodicity condition is written as 

      , , 2 /xz xzz t z t     , ∀z∈(0,H),  t∈(-∞,+∞) (11) 
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    , , 2 /x xz t z t     , ∀z∈(0,H),  t∈(-∞,+∞) (12) 

It is convenient to rewrite the above equations in terms of dimensionless quantities, which 
are defined as follows: 

 , , , , ,Y
Y

Y

G z ct A H
c z t A

H H G H c

 
 

          (13) 

where z  and t  are the dimensionless co-ordinate and time. A  is the dimensionless 

displacement. 
Then the system total energy E can be expressed as follows: 
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Due to the non-linear governing equations described above is impossible to find an exact 

solution. For this reason, an approximate solution is sought by using the perturbation 

method. Among a few variants of the perturbation method, the Lindsted-Poincaré technique 

seems to be a suitable one. For the use of this technique, the potential energy function ̂ , the 

system total energy E and normalized excitation frequency  are expanded into 

perturbation series in terms of  as follows:  

   2 3
0 1 2 3

ˆ .....              (15) 
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0 1 2 3 .....E E E E E        (16) 

   2 2 2 2 2 3 2
0 1 2 3 .....            (17) 

And the system total energy can be expressed as follow: 
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   (18) 

5.1 An example 

Assume that a example RC building is located in the site which seismic zone factor Z is 

0.33g. The total building height H is 30 meter. The corresponding empirical period T0 = 

0.07H3/4=0.8923 sec. According the seismic force requirements of the Taiwan 1989 seismic 

provision, the corresponding spectral acceleration Sa(T0) is equal to 0.33(9.8)1.2/  2/3
0T

=4.1715 m/sec2.  the spectral displacement SD=Sa(T0/2)2=0.0851 meter. If assume the 

ductility factor R of this building is 3.0, and the post-yielding stiffness ratio is 0.05 along the 
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lateral direction, then the system yielding displacement y= SD/R=0.0284 m.  Then the 

perturbation factor  can be calculated  as follow: 

   
  

  3

1 1
0.01 0.0143

1 1

R

R






 
  

    
 (19) 

If the “P-Wave Predicted PGA Method” predicted the PGA value and the dominant 

frequency are 59.1gal and3.44 rad/sec, respectively, the peak base displacement amplitude  
 

 

Fig. 11. Simplified shear building model 

 

 

Fig. 12. The relationship between the   and 0 

H

X 

Z 
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A is 0.05m, Substituting z=1 and A=0.05m, then the relationship between the dimensional 

excitation frequency  and the linear 0 can be shown as Figure2. In Figure 12, when the 0 

is equal to the maximum value 0.885, the corresponding   value is 0.7715. Then the 
maximum story drift distribution can be shown as Figure 13. Figure 14 shows the relative 
displacement between the base and top of this example building. no figure 11  

 

 

Fig. 13. The maximum drift ratio of the example building 

 

Fig. 14. The relative displacement between the base and top 

6. Rapid estimation of the structural responses / customized modulus  

The main target of this research is to rapidly estimate the amplification factor of structural 
response with the basic earthquake characteristics supported from other sub-projects. 
Ideally, the developed system should be able to predict the structural response accurately 
within 0.1 sec calculation time to protect the life and property of the whole island.  
The Tai-power Building is used as the objective building in the research. By using a fine-

tuned finite element model of the Tai-power Building with 60 earthquake time histories 

recorded in the Taipei basin, all the parameters including the PGA, earthquake magnitude, 

and distance between the epicenter and the local site are collected as the database for the 

scenario-based repression analysis.  
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By considering the covariance’s of the amplification factors with PGA, earthquake 

magnitude, and epicenter, obvious relationship can be found between epicenter distance 

and the roof amplification factor. As the result, the epicenter distance is chosen as the 

governing factor to establish modules.  

6.1 Regression method 
The Quadratic Response Surface Model (QRSM) is used as the regression model in this 

scenario-based technique and the general form can be expressed as  

    
2

0
0 0

( ) .....
N N N

i i ij i j ii i
i i j i

y x a a x a x x a x
  

                     (20) 

By choosing this model, a polynomial model with multi-variables can be easily established 

than the conventional nonlinear analysis process.  

6.2 Analysis result 
The regression results of the amplification factor on the roof floor in both X and Y directions 

are expressed from Figures 15 to 18.  

According to the analysis result, the average error percentage of the amplification factor in 

the X direction is approximately 21.71% when distance between the epicenter and the site is 

less than 120 km, and the average error percentage in the Y direction is approximately 

21.8%. Moreover, when the distance is larger than 120 km, the average error percentages 

reach 20% in the X direction and only 13.92% in the Y direction. In short, although some 

fluctuations still exist in few cases, the established regression models can generally estimate 

the amplification factor within several seconds after the earthquakes happen.    

By using the scenario-based technique, the amplification factor of structural response can be 

successfully predicted by the regression models using QRSM. The theoretical analysis has 

demonstrated that the prediction error can be kept in an acceptable range while the result is 

obtained within few seconds after the major earthquakes.   

 

 

Fig. 15. Distance<120 km ( X direction ) 
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Fig. 16. Distance>120 km  ( X direction ) 

 

Fig. 17. Distance<120 km ( Y direction ) 

 

Fig. 18. Distance>120 km  ( Y direction ) 
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To improve the performance of the system, the dominant frequency of the earthquake and 

the time difference between the P-wave and the S-wave will be considered as major factors 

in the regression models. Meanwhile, nonlinear model method will also be used to develop 

an alternative regression model. By combing these two models, it is believed that a reliable 

structural response prediction system can be expected in the near future. 

7. Database for rapid estimated structural response  

Sstructures suffered from earthquakes is concerned more and more for engineers. The 

earthquakes are always occurred immediately; however, how to estimate the structural 

response accurately and fast before the earthquake arrived is a great challenge. To achieve 

this end, a database contained seismic characteristics and dynamic analysis of FEM model is 

presented for fast estimated response of structure and the Tai-Power Building is opted as a 

full-scale FEM model which is constructed by using FEM analysis software PISA3D 

developed by NCREE. 

7.1 Modification of PISA3D model 
In order to estimate accurate response of structure, verification of the response between 

PISA3D model and reality structure should be considered. The famous Chi-Chi earthquake 

was chosen to compare the response of original PISA3D model and time history records of 

Tai-power Building. It can be seen in Figure 19 that the simulated acceleration response and  

 

  
 

Fig. 19. Time history and transfer function of CWB records and PISA3D model in strong 

axis. (Excitation: Chi-Chi earthquake) 
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transfer function in the strong axis can be slightly regarded as consistent with the records. 

But as shown in Figure 20, it says that the structural response of PISA3D model in the weak 

axis was not estimated well as the reality structure.  

From the time history and transfer function of weak axis, it figures out the structural 

stiffness (natural frequency) of FEM model is not sufficient as the reality structure. 

Therefore, modification of PISA3D model should be considered. It has several methods to 

modify the PISA3D model. In this case, the effect of rigid end zone and shear wall will be 

applied to the model to increase the stiffness of the model appropriately. 

 
 
 
 

  
 
 
 
 

Fig. 20. Time history and transfer function of CWB records and PISA3D model in weak axis. 
(Excitation: Chi-Chi earthquake) 

Consideration of rigid end zone and shear wall (in weak axis): 

The effect of rigid end zone and shear wall shows better estimated structural response both 

in strong axis and weak axis. It can be shown in the Figure 21.  

Besides, it’s worth to mention that the dynamic characteristics of reality structure show 

different natural frequencies when structure suffered from different PGA of excitation. This 

phenomenon can be simply separated about PGA 25 gal. Two different PISA3D models, 

therefore, were proposed to simulate this phenomenon appropriately.  
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Fig. 21. Time History of CWB records and PISA3D model in strong and weak axis. 
(Excitation: 331 earthquake) 

7.2 Construction of database 
One of main purposes to construct the database is to understand structural characteristics 
for fast estimated response of structure suffered from different earthquakes; the other is to 
provide for other research such as SHM, and system identification, etc. 
The contents of seismic characteristics are shown as following: 
1. Coordinates of earthquake epicenter, 
2. Coordinates of sensor stations, 
3. Distance between epicenter and site,  
4. Earthquake magnitude,  
5. Site intensity,  
6. Main frequency of earthquake  
7. Time difference between P-wave and S-wave arrived. 
And the dynamic analysis of finite element model includes: 
1. Time history of structural response at specific floor 
2. Time history of ground motion,  
3. Peak floor acceleration  
4. And PGA. 
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For fast estimated response of structure, the number of database should be large than a 
certain amount of data. However, the on-site records can not be provided as large as a 
database. Therefore, In Figure 22, it shows the concept to construct the database and to 
simulate the different site condition in Taiwan. It uses about 50 records of strong 
earthquake motion of Tai-power Building to verify and modify the PISA3D model, and 
uses more than thousands free field ground motion to excite PISA3D model to simulate 
the different site condition. 
 

 

Fig. 22. Simulation of site condition in Taiwan. 

7.3 Structural response prediction 
This study use the recorded earthquake free field time histories collected from 1992-2006. 

Each earthquake record was marked P-wave and S-wave by automatically P-wave trigger 

program and verified manually. Then these earthquake accelerograms were consolidated 

into the earthquake free-field accelerogram database. Among the 59 observed buildings 

within the Taiwan Strong Motion Instrumentation Program (TSMIP) by CWB, the Tai-Power 

building is chosen since its significant features. There are totally 73 earthquake records from 

Tai-Power building. There are 26 time histories recorded from each sensor installed for each 

earthquake record. It is the tallest building when it is constructed. There are totally 26 tri-

axial strong motion sensors installed in the building. Since the data recorded is not enough 

for training a neural network, the time history structural analysis software PISA-3D is used 

to build a numerical model for Tai-Power building. The 73 recorded earthquake time 

histories from Tai-Power building were used to modify and calibrate the numerical model of 

Tai-Power building. Then the chosen earthquake records from the earthquake free-field 

accelerogram database were used as input to run the PISA-3D and the response time 

histories were obtained to form the earthquake response accelerogram database. The 

structural response is assumed to be linear (elastic) behavior. 
Usually the time history analysis for large-scale structure is time consuming because of its 
large linear and nonlinear analysis will affect the efficiency of calculation. Therefore, the 
structural analysis software PISA-3D, developed by National Center for Research on 
Earthquake Engineering (NCREE), is used for calculating the structural response of Tai-
Power building under earthquakes due to its computational advantages for Large-scale 
structure and therefore the computing time required for analysis is reduced. 
To increase the records of structural response for the neural network training, all the 
earthquake records in the earthquake free-field accelerogram database were considered and 
the distribution of the peak ground acceleration (PGA) were considered. The records with 
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PGA range from 5-500 gal were chosen to run the PISA-3D for structural response. There are 
totally 10,097 records were used for further analysis (Chang, K.C. et al., 2010). Figure 23 
shows the flowchart of numerical building model analysis using PISA3D. All the results 
from PISA-3D were collected into the building response database for further research. 
  

 

Fig. 23. Flowchart of numerical building model analysis using PISA3D 

The architecture of neural networks used in this study is set to be different. Two neural 
networks, NNT0-3 and NNT0-10, were used for on-site EEWS with the Fast Fourier Transform 
(FFT) of the initial 3 seconds and 10 seconds sensed earthquake waveform as input 
respectively. Both models consisted of one input layer with 129 (NNT0-3) or 257 (NNT0-10) 
neurons, two hidden layers and one output layer with 6 neurons (as shown in Figure 24). 
Each of the neural networks was used to analyze the relationship between the initial three or 
ten seconds of the sensed earthquake accelerogram and structural response of the Tai-Power 
building for that specific earthquake. 
In this method, the numerical model of Tai-Power building is built using PISA-3D.  There 

are 73 earthquake records between 1994 and 2006 recorded from the sensors installed on the 

Tai-Power building were used to modify and calibrate the numerical model for structural 

response. The simulated responses for the roof of the Tai-Power building were within 10% 

of error. Then the 10097 earthquake records from the database of CWB were chosen as input 

to run the time history analysis using PISA-3D. The structural response of these 10097 

earthquake records were then integrated into building response database. 

The neural networks were used to learn (analyze) the relationship between free field ground 
motion and the structural response on the roof of the Tai-Power building.  The 10097 
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earthquake records were divided into training group and testing group randomly. 8082 
earthquake records (80% of the total) were used to train the neural networks while 2015 
earthquake records (20% of the total) were used to test and validate the trained neural 
networks. The Fast Fourier Transform (FFT) of the digitized signal from the first 3 seconds 
of the earthquake time history after p-wave were used as input to the model NNT0-3 while 
the FFT from first 10 seconds of the earthquake time history were used  as input to the 
model NNT0-10. The structural responses for the roof of the Tai-Power building from the 
building response database were used as output for the neural networks.   
 

 

Fig. 24. Predicting structural response using neural networks 

The comparison of the real and estimated seismic intensity for NNT0-3 and NNT0-10 were 
shown in figures 25 and 26. The results of NN estimated PGA versus the real PGA from 
2015 novel testing cases is plotted in the figures.  The green area means that the intensity of 
the NN estimated PGA is the same as the intensity of the real PGA.  The red area means that 
the intensity of the NN estimated PGA is one grade less than the intensity of the real PGA.  
The purple area means that the intensity of the NN estimated PGA is one grade larger than 
the intensity of the real PGA.  The accuracy of the intensity estimation is shown in table 3. 
Both the results from NNT0-3 and NNT0-10 are acceptable and the regression analysis R2 is 
0.638 for NNT0-3 and 0.787 for NNT0-10.  It also shows better convergence in figure 4.  Which 
shows more input information the neural network model, more accuracy result can be 
obtained from the neural networks.  Which means NNT0-10 is doing better than NNT0-3.  If the 
acceptable range for the intensity prediction is set to be ±1 grade, the accuracy for NNT0-3 
will be 91.5% (1844/2015) and 93.7% (1888/2015) for NNT0-10.  
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Fig. 25. Comparison of the real and est. seismic intensity (NNT0-3)  

 

Fig. 26. Comparison of the real and est. seismic intensity (NNT0-10) 

 

Error (grade)
NN model 

-2 -1 0 1 2 

NNT0-3 162 781 885 178 2 

NNT0-10 120 846 930 112 3 

Table 3. Accuracy of the intensity estimation 
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The comparison of the real and estimated arrival time for PGA measured on the roof in two 

directions (horizontal and vertical) from both NN models (NNT0-3 and NNT0-10) were shown 

in figures 27-30.  The results have shown convergence and the regression analysis R2 is 0.67 

for NNT0-3 and 0.70 for NNT0-10 in East-West direction.  As for North-South direction, the 

regression analysis R2 is 0.644 for NNT0-3 and 0.662 for NNT0-10.  As for Up-Down (vertical) 

direction (figures 7 and 8), the regression analysis R2 is 0.676 for NNT0-3 and 0.7 for NNT0-10.  

These results show that the performance of NNT0-10 is better than NNT0-3.  The conclusion 

can be made that more input information (longer earthquake time history) to the neural 

network; more accuracy of the prediction can be increased. 

 

 

Fig. 27. Comparison of the real and est. arrival time for PGA-EW (NNT0-3) 

 

Fig. 28. Comparison of the real and est. arrival time for PGA-EW (NNT0-10) 
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In figures 27-30, the blue lines indicated the relative error of plus or minus 20% of the real 
values. The comparison of the real and estimated arrival time for PGA is shown in Table 4.  
The B area means the estimation is slightly small than the real value within 20% of error.  
The C area means the estimation is slightly larger than the real value within 20% of error. If 
the allowable error range is set to be plus or minus 20% of the real values (B and C areas 
indicated in figures), then the average accuracy for NNT0-3 is 28.3% and 31.6% for NNT0-10.  

However, in the sense of early warning, the A area should be considered acceptable since 
the estimation is less than the real value, i.e. the warning is still effective to the people.  
Therefore, the allowable error range can be set to be A, B, and C areas indicated in figures, 
the average accuracy for NNT0-3 is 60.2% and 66.9% for NNT0-10. 

 

 

Fig. 29. Comparison of the real and est. arrival time for PGA-UD (NNT0-3) 

 

Fig. 30. Comparison of the real and est. arrival time for PGA-UD (NNT0-10) 
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 NN A B C D Total 

EW 

T0-3 
406 289 301 1019 

2015 
100% 

20.15% 14.34% 14.94% 50.57% 

T0-10 
494 305 338 878 

24.52% 15.14% 16.77% 43.57% 

NS 

T0-3 
1109 316 231 359 

55.06% 15.68% 11.47% 17.83% 

T0-10 
1182 350 219 264 

58.66% 17.37% 10.87% 13.10% 

UD 

T0-3 
412 263 311 1029 

20.45% 13.05% 15.43% 51.07% 

T0-10 
460 340 356 859 

22.83% 16.87% 17.67% 42.63% 

A: Est.< Real*80%, B: Real*80% < Est.< Real, C: Real < Est.< Real*120%, D: Real*120%< Est. 

Table 4. Comparison of the real and estimated arrival time for PGA 

8. Conclusion 

Preparedness is crucial when a severe earthquake occurs since most obstacles and dangers 

can be determined beforehand. In this chapter, the authors presented the development of 

the on-site EEWS on Taiwan using several different methodology including neural 

networks. The time issue is the key countermeasure during a large earthquake, thus a good 

optimization algorithm to determine immediately when and what information must be 

provided. Therefore, the challenge of using only 1 second of earthquake acceleration time 

history signal to predict earthquake information is under development. The accuracy and 

reliability of earthquake information is of the utmost importance and is of immense benefit 

in the mitigation of earthquake hazards. Furthermore, the estimation of the structural 

response before the arrival of the S-wave has been studied in the 2nd stage of the on-site 

EEWS development. The authors also presented two rapid-estimation of structural 

responses modulus. The general modulus, which assumed the structure as a shear beam 

model, can be widely applied to different type of structures. The general modulus is low-

cost, widely application field and rapid estimation. In the other hand, the customized 

modulus can provide the more accurate and detail estimation of the structural responses. 

Moreover, it can connect the actuation system to dramatically reduce the economic loss due 

to earthquake hazard. During the development of the two rapid-estimation of structural 

responses modulus, the FEM analysis of the Tai-Power building is made. The real dynamic 

structural responses from the CWB are used to refine and verify the FEM in PISA3D. Both 

the on-site and free field data are used as inputs and feed into the FEM. All the simulated 

structural responses are collected into the database. This database can be provided to the 

development of the rapid-estimation of structural responses modulus. Finally, it will be 

www.intechopen.com



 
Development of On-Site Earthquake Early Warning System for Taiwan 357 

released to public for the researches of the structural health monitoring to develop and 

verify their algorithms. 

In the future, the verification of the reliability of the communication lines as well as the 
system is needed to ensure reliable operation of the EEWS. Therefore, the EEWS is able to 
consequently bring huge benefits on the earthquake hazard mitigation. With further 
research on the use of the observed earthquake records, and enhancing the accuracy and 
immediate response of the real-time ground motion prediction, the possibility of the on-site 
EEWS is on the horizon. 
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