990 research outputs found

    Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium

    Full text link
    We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3 D_1 magnetic-dipole transition in atomic ytterbium using the Stark-interference technique. This amplitude is important in interpreting a future parity nonconservation experiment that exploits the same transition. We find  = 1.33(6)Stat(20)β×104μ0| | ~ = ~ 1.33(6)_{Stat}(20)_{\beta} \times 10^{-4} \mu_0, where the larger uncertainty comes from the previously measured vector transition polarizability β\beta. The M1M1 amplitude is small and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and additions based on comments from referee

    A Pair of Disjoint 3-GDDs of type g^t u^1

    Full text link
    Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight codes. We study the existence of a pair of disjoint 3-GDDs of type gtu1g^t u^1 and establish that its necessary conditions are also sufficient.Comment: Designs, Codes and Cryptography (to appear

    Breaking CPT by mixed non-commutativity

    Get PDF
    The mixed component of the non-commutative parameter \theta_{\mu M}, where \mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu 5} with the four-dimensional axial vector current and with the CPT odd dim=6 operators starting from five-dimensional Yukawa and U(1) theories. The resulting bounds from clock comparison experiments place a stringent constraint on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold projection and/or localization of fermions on a 3-brane lead to CPT-conserving physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure

    Rotational master equation for cold laser-driven molecules

    Full text link
    The equations of motion for the molecular rotation are derived for vibrationally cold dimers that are polarized by off-resonant laser light. It is shown that, by eliminating electronic and vibrational degrees of freedom, a quantum master equation for the reduced rotational density operator can be obtained. The coherent rotational dynamics is caused by stimulated Raman transitions, whereas spontaneous Raman transitions lead to decoherence in the motion of the quantized angular momentum. As an example the molecular dynamics for the optical Kerr effect is chosen, revealing decoherence and heating of the molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Heavy-light mesons with staggered light quarks

    Get PDF
    We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our method for constructing heavy-light operators exploits the close relation between naive and staggered fermions. The new approach is tested on quenched configurations using several staggered actionsn combined with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and compared to previous quenched lattice studies. An important technical detail, Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other minor changes, version appearing in Phys. Rev.

    Inhibiting decoherence via ancilla processes

    Get PDF
    General conditions are derived for preventing the decoherence of a single two-state quantum system (qubit) in a thermal bath. The employed auxiliary systems required for this purpose are merely assumed to be weak for the general condition while various examples such as extra qubits and extra classical fields are studied for applications in quantum information processing. The general condition is confirmed with well known approaches towards inhibiting decoherence. A novel approach for decoherence-free quantum memories and quantum operations is presented by placing the qubit into the center of a sphere with extra qubits on its surface.Comment: pages 8, Revtex

    Mesonic Wavefunctions in the three-dimensional Gross-Neveu model

    Get PDF
    We present results from a numerical study of bound state wavefunctions in the (2+1)-dimensional Gross-Neveu model with staggered lattice fermions at both zero and nonzero temperature. Mesonic channels with varying quantum numbers are identified and analysed. In the strongly coupled chirally broken phase at T=0 the wavefunctions expose effects due to varying the interaction strength more effectively than straightforward spectroscopy. In the weakly coupled chirally restored phase information on fermion - antifermion scattering is recovered. In the hot chirally restored phase we find evidence for a screened interaction. The T=0 chirally symmetric phase is most readily distinguished from the symmetric phase at high T via the fermion dispersion relation.Comment: 18 page
    corecore