7 research outputs found

    Total Electron Temperature Derived from Quasi-Thermal Noise Spectroscopy In the Pristine Solar Wind: Parker Solar Probe Observations

    Full text link
    The Quasi-thermal noise (QTN) technique is a reliable tool to yield accurate measurements of the electron parameters in the solar wind. We apply this method on Parker Solar Probe (PSP) observations to derive the total electron temperature (TeT_e) from the linear fit of the high-frequency part of the QTN spectra acquired by the RFS/FIELDS instrument, and present a combination of 12-day period of observations around each perihelion from Encounter One (E01) to Ten (E10) (with E08 not included) with the heliocentric distance varying from about 13 to 60 solar radii (RR_\odot{}). We find that the total electron temperature decreases with the distance as \simR0.66R^{-0.66}, which is much slower than adiabatic. The extrapolated TeT_e based on PSP observations is consistent with the exospheric solar wind model prediction at \sim10 RR_\odot{}, Helios observations at \sim0.3 AU and Wind observations at 1 AU. Also, TeT_e, extrapolated back to 10 RR_\odot{}, is almost the same as the strahl electron temperature TsT_s (measured by SPAN-E) which is considered to be closely related to or even almost equal to the coronal electron temperature. Furthermore, the radial TeT_e profiles in the slower solar wind (or flux tube with larger mass flux) are steeper than those in the faster solar wind (or flux tube with smaller mass flux). More pronounced anticorrelated VpV_p-TeT_e is observed when the solar wind is slower and closer to the Sun.Comment: 10 pages, 7 figures, and Astronomy & Astrophysics Accepte

    NenuFAR Performance for Solar Radio Observations

    No full text
    NenuFAR is a new radio telescope covering the range 10 MHz to 85 MHz, implemented in France. It extends the capabilities of LOFAR toward the low-frequency range. The scientific goals are wide, from the dark ages of the universe and galaxies to pulsars and the search for exoplanets. This letter illustrates the capabilities of NenuFAR for solar studies

    Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind

    Get PDF
    We use multi-spacecraft observations of invididual type III radio bursts in order to calculate the directivity of the radio emission, to be compared to the results of ray-tracing simulations of the radio-wave propagation and probe the plasma properties of the inner heliosphere. Ray-tracing simulations of radio-wave propagation with anisotropic scattering on density inhomogeneities are used to study the directivity of radio emissions. Simultaneous observations of type III radio bursts by four widely-separated spacecraft are used to calculate the directivity and position of the radio sources. The shape of the directivity pattern deduced for individual events is compared to the directivity pattern resulting from the ray-tracing simulations. We show that simultaneous observations of type radio III bursts by 4 different probes provide the opportunity to estimate the radio source positions and the directivity of the radio emission. The shape of the directivity varies from one event to another, and is consistent with anisotropic scattering of the radio-waves
    corecore