16 research outputs found

    The order parameter-entropy relation in some universal classes: experimental evidence

    Get PDF
    The asymptotic behaviour near phase transitions can be suitably characterized by the scaling of Δs/Q2\Delta s/Q^2 with ϵ=1T/Tc\epsilon=1-T/T_c, where Δs\Delta s is the excess entropy and QQ is the order parameter. As Δs\Delta s is obtained by integration of the experimental excess specific heat of the transition Δc\Delta c, it displays little experimental noise so that the curve log(Δs/Q2)\log(\Delta s/Q^2) versus logϵ\log\epsilon is better constrained than, say, logΔc\log\Delta c versus logϵ\log\epsilon. The behaviour of Δs/Q2\Delta s/Q^2 for different universality classes is presented and compared. In all cases, it clearly deviates from being a constant. The determination of this function can then be an effective method to distinguish asymptotic critical behaviour. For comparison, experimental data for three very different systems, Rb2CoF4, Rb2ZnCl4 and SrTiO3, are analysed under this approach. In SrTiO3, the function Δs/Q2\Delta s/Q^2 does not deviate within experimental resolution from a straight line so that, although Q can be fitted with a non mean-field exponent, the data can be explained by a classical Landau mean-field behaviour. In contrast, the behaviour of Δs/Q2\Delta s/Q^2 for the antiferromagnetic transition in Rb2CoF4 and the normal-incommensurate phase transition in Rb2ZCl4 is fully consistent with the asymptotic critical behaviour of the universality class corresponding to each case. This analysis supports, therefore, the claim that incommensurate phase transitions in general, and the A2_2BX4_4 compounds in particular, in contrast with most structural phase transitions, have critical regions large enough to be observable.Comment: 13 pp. 9 ff. 2 tab. RevTeX. Submitted to J. Phys.: Cond. Matte

    Systematic behaviour of the in-plane penetration depth in d-wave cuprates

    Full text link
    We report the temperature T and oxygen concentration dependences of the penetration depth of grain-aligned YBa_2Cu_3O_{7-\delta} with \delta= 0.0, 0.3 and 0.43. The values of the in-plane \lambda_{ab}(0) and out-of-plane \lambda_{c}(0) penetration depths, the low temperature linear term in \lambda_{ab}(T), and the ratio \lambda_{c}(0) /\lambda_{ab}(T) were found to increase with increasing δ\delta. The systematic changes of the linear term in \lambda_{ab}(T) with T_c found here and in recent work on HgBa_2Ca_{n-1} Cu_nO_{2n+2+\delta} (n = 1 and 3) are discussed.Comment: 4 pages, 4 figure

    Thermal annealing of radiation damaged titanite

    No full text

    Interfaces in metamict titanite: the macroscopic mechanical properties after stepwise annealing

    No full text
    Elastic material properties of metamict titanite (sample E2312) during thermally induced stepwise recrystallization are measured using nanoindentation. Changes of the elastic modulus (E) and the hardness (H) are related to increasing long-range order and vanishing amorphous interface areas. Metamict titanite shows H and E values close to titanite glass. H decreases on annealing until ca. 950 K to 9.08 GPa and increases at higher temperatures, while E increases continuously on annealing up to ca. 168.4 GPa at 1220 K. Crystalline titanite from Rauris shows strong anisotropy and H and E values are clearly larger than those of E2312
    corecore