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Abstract
The asymptotic behaviour near phase transitions can be suitably characterized by the scaling of

∆s/Q2 with ǫ = 1− T/Tc, where ∆s is the excess entropy and Q is the order parameter. As ∆s is

obtained by integration of the experimental excess specific heat of the transition ∆c, it displays little

experimental noise so that the curve log(∆s/Q2) versus log ǫ is better constrained than, say, log ∆c

versus log ǫ. The behaviour of ∆s/Q2 for different universality classes is presented and compared.

In all cases, it clearly deviates from being a constant. The determination of this function can then

be an effective method to distinguish asymptotic critical behaviour. For comparison, experimental

data for three very different systems, Rb2CoF4, Rb2ZnCl4 and SrTiO3, are analysed under this

approach. In SrTiO3, the function ∆s/Q2 does not deviate within experimental resolution from

a straight line so that, although Q can be fitted with a non mean-field exponent, the data can

be explained by a classical Landau mean-field behaviour. In contrast, the behaviour of ∆s/Q2

for the antiferromagnetic transition in Rb2CoF4 and the normal-incommensurate phase transition

in Rb2ZnCl4 is fully consistent with the asymptotic critical behaviour of the universality class

corresponding to each case. This analysis supports, therefore, the claim that incommensurate phase

transitions in general, and the A2BX4 compounds in particular, in contrast with most structural

phase transitions, have critical regions large enough to be observable.
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1. INTRODUCTION

The observation of fluctuation-driven critical phenomena in structural phase transitions
is subject of long and persistent controversies. Although power law behaviours near phase
transitions can be “universal”, the temperature range where this asymptotic behaviour can
be observed within experimental resolution (the so-called asymptotic or critical region) is
not. It depends in general on the particular features of each system and can even vary
for different physical quantities. It is no wonder, therefore, that the size of the critical
region in structural phase transitions has been a matter of discussion for several decades. In
general, one should expect it to be smaller than in the pure order-disorder systems, the spin
hamiltonians, that represent the corresponding universality classes. However, the Ginzburg
criterion has been equally invoked to predict typical critical regions of size too small to
be of any experimental significance,[1] as to justify critical regions of the order of 0.1 in
reduced temperature (T/Tc)[2] (an interval that would greatly surpass that of the actual
spin-hamiltonian representatives of some of the universality classes). In addition, structural
defects may produce strong deviations from the universal asymptotic laws predicted for
ideally perfect crystals.[3, 4, 5]

Authors expecting insignificantly small critical regions have argued repeatedly that the
experimental observation of power laws around the phase transition with non-mean-field
exponents may have a rather simple explanation, e.g. in terms of the Landau theory when
sixth-order or higher order terms are taken into account in the Landau expansion[1]. For
instance, a 2-4-6 Landau potential:

∆G =
1

2
AǫQ2 +

1

4
BQ4 +

1

6
CQ6 (1)

with temperature independent parameters A, B, C and ǫ = 1 − T/Tc yields indeed a mean
field critical behaviour for the order parameter (Q ∝ ǫ1/2) with a mean-field exponent
β = 1/2, but the asymptotic behaviour is limited to ǫ ≪ B2/4AC. This temperature
interval can be beyond any observation if the fourth order coefficient is small enough, a
typical situation happening if the system is close to a tricritical point. In ǫ-intervals of the
order of 0.01-0.1, or even larger, the behaviour of the order parameter can then be fitted to
power laws with “effective” exponents which are intermediate between the mean field value
1/2 and the one corresponding to mean field tricritical behaviour (1/4).

More generally, it became clear that any experimental observation of expected asymp-
totic critical behaviour for the order parameter requires further confirmation through cross-
examination of its consistency with the behaviour of other physical parameters near the
transition point. The correlation of the order parameter with the transition excess entropy
has been recently used for this purpose[6]. The excess entropy ∆s is expected to be propor-
tional to the square of the order parameter Q not only in the mean field asymptotic regime
(β = 1/2, α = 0), but also for any behaviour described by a Landau potential like equa-
tion (1). The relation would be true as long as the terms higher than quadratic in the
Landau potential are temperature independent and the quadratic term has a linear tem-
perature dependence. This particular relation between entropy and order parameter is in
principle broken in the asymptotic regime for all other universality classes. Its experimen-
tal check can be then an effective way to distinguish between genuine fluctuation-driven
critical behaviour and pure Landau behaviour. Indeed, this proportionality relation has
recently been shown for SrTiO3, in contradiction with a common belief that this compound
exhibits in a significant temperature interval asymptotic critical behaviour corresponding to
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the Heisenberg–3D or the Ising–3D universality class[6, 7, 8]. The analysis of ∆s, instead of
checking directly the expected critical behaviour of the excess specific heat ∆c, has the fun-
damental advantage of using an integrated quantity with a smooth temperature dependence
that is independent of experimental statistical errors in the measurement of ∆c.

In the present paper, the approach of comparing ∆s and Q2 for analysing the thermal
behaviour at phase transitions is further investigated and applied to several materials. The
expected behaviour of ∆s/Q2 for the different universality classes and the Landau case,
is discussed and compared with that derived from experimental data for Rb2CoF4 (anti-
ferromagnetic phase transition), Rb2ZnCl4 (normal-incommensurate phase transition) and
SrTiO3 (antiferrodistortive transition).

2. ENTROPY-ORDER PARAMETER RELATION IN THE CRITICAL REGION

The asymptotic entropy-order parameter relation for the different universality classes
follows from the critical laws for specific heat and order parameter. It can be expressed as

∆s

Q2
∝ ǫκ ∆s ∝ Q2κ′

(2)

with

κ =

{

1 − α − 2β α > 0
1 − 2β α ≤ 0

(3)

and

κ′ =

{

1−α
2β

α > 0
1

2β
α ≤ 0

(4)

In order to get these expressions the normal asymptotic behaviour of the order parameter,
characterized by the exponent β, is assumed while that of the excess specific heat is supposed
to be:

∆c ∝
ǫ−α − 1

α
(5)

Note that the specific heat is not reduced to a pure power law as it includes the cases of
negative α values and the logarithmic divergence for α → 0.[9, 10]

The resulting exponents κ and κ′ for the different universality classes and the Landau
behaviour are listed in table I. Non-classical exponents κ and κ′ differ significantly from
the mean-field/Landau trivial values associated with the above mentioned proportionality
law. Nevertheless, these deviations may be rather difficult to detect in a typical ∆s vs. Q2

plot. In figure 1, we present these plots for the different universality classes assuming that,
in an ǫ interval of 0.1 and within experimental resolution, both the order parameter and the
excess specific heat follow their asymptotic critical behaviour (see equation (5) for that of
the excess specific heat).

The excess entropy in figure 1 has been calculated by numerical integration of the ex-
pression:

∆s =

T
∫

Tc

∆c

T ′
dT ′ =

ǫ
∫

0

∆c

1 − ǫ′
dǫ′ (6)
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Class n d α β κ κ′ κeT
κ′

eT

Landau (2-4) - - 0 0.5 0 1 0 1

Landau (2-6) - - 0.5 0.25 0 1 0 1

Ising–2D 1 2 0 0.125 0.75 4 0.598 3.39

Ising–3D 1 3 0.12 0.31 0.26 1.42 0.163 1.26

XY–3D 2 3 -0.007 0.345 0.31 1.45 0.164 1.24

Heisenberg–3D 3 3 -0.14 0.37 0.26 1.31 0.182 1.25

TABLE I: The critical exponents for several universal classes. The dimensionality of the “inter-

action” is labeled d. The dimensionality of order parameter is labeled n. Exponent α is that of

the specific heat, β is the order parameter exponent, In the limit ǫ → 0, κ and κ′ are given by

equation (3) and equation (4). κeT
stands for the “effective” exponent obtained in an ǫ-interval of

10−3 − 10−2 for the theoretical assymptotic behaviour of the models.
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FIG. 1: Theoretical behaviour of the excess entropy vs the square of the order parameter for various

universality classes. Landau mean field theory gives a straight line passing through origin. Order

parameter is normalized to unity at ǫ = 1, while entropies have been renormalized so as to match

at Q2 = 0.2. Upper labels stand for ǫ in the XY–3D universality class, they are also approximately

valid for Heisenberg–3D and Ising–3D but not for Ising–2D or for Landau behaviour.

this integration leads generally to smooth curves ∆s(T ) even if ∆c contains significant
statistical noise.

Classical Landau behaviour is represented in figure 1 by a straight line through the
origin. The Ising–3D, Heisenberg–3D and XY–3D classes yield curves different but close to
a straight line. Therefore, in practice, the deviation from the Landau behaviour is difficult
to assess quantitatively through these plots. Only in the case of the Ising–2D class the curve,
being a fourth order parabola, clearly deviates from the proportionality law. The different
relationships between ∆s and Q2 become more obvious in a log-log plot of ∆s/Q2 vs ǫ. The
plots corresponding to the curves of figure 1 are presented in figure 2. The deviation from the
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FIG. 2: ∆s/Q2 versus ǫ in a log-log plot for the same data used for curves of figure 1. The

magnitude represented in y-axis is normalized to unity at ǫ = 0.1 except that of Ising–2D which

has been arbitrarily shifted upwards for the sake of clarity.

horizontal Landau behaviour is then obvious for all universality classes. The larger deviation
is seen for the Ising–2D case, while all other universality classes lead again to more similar
curves. It also becomes evident in the figure that although the curves have been obtained
assuming perfect asymptotic behaviour for ∆c and Q up to ǫ = 0.1, the magnitude ∆s/Q2

is far from being in the asymptotic regime represented by the power law of equation (3) even
at ǫ values so low as 0.0005. The curves deviate rather smoothly from straight lines and in
fact their approximate slopes are far from the asymptotic values given by equation (3) and
listed in table I. Indeed, the “critical” region for the excess entropy is much smaller than for
∆c, since the integration represented by equation (6) yields the sum of several competing
terms with similar but different powers of ǫ. Hence, according to figure 2, the asymptotic
behaviour for ∆s/Q2 represented by equation (2) is not experimentally accessible in any
case. Nevertheless, the curves in figure 2 can be considered “universal” in the sense that
they should be satisfied for any system so long as its order parameter and specific heat are
following the asymptotic critical behaviour of the corresponding universality class. In the ǫ
interval [0.001-0.01] the curves can be approximated to straight lines, their slopes correspond
then to “universal” effective exponents κe for the approximate law ∆s/Q2 ∝ ǫκeT restricted
to this temperature interval. The exponents κeT

obtained from the linear fit of the curves
in figure 2 in the mentioned temperature interval are listed in table I.

3. EXPERIMENTAL CASES

We consider now under this approach three very different systems: strontium ti-
tanate (SrTiO3), rubidium tetrafluorocobaltate (Rb2CoF4) and rubidium tetrachlorozincate
(Rb2ZnCl4).
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FIG. 3: Excess entropy versus excess intensity of X-ray difraction experiments around the SrTiO3

phase transition at about 106K. In the upper axis approximate values for reduced temperature

are indicated

3.1. SrTiO3

The antiferrodistortive phase transition of SrTiO3 has been widely considered one of
the few examples of a structural phase transition with a clear observable critical region.
Müller et al.[2] could fit their EPR data assuming a power law for the order parameter
with β = 0.35 in an ǫ interval of the order of 0.1. This behaviour was then identified as
the expected asymptotic behaviour of the Heisenberg–3D class. Recently, the excess entropy
was determined and compared with the order parameter data; a mean field linear correlation
was observed[6], thus the critical region might be beyond observation. For comparison with
earlier specific heat data see Ref. [11].

For the sake of comparison with the two following systems, the ∆s-Q2 relation obtained
in Ref. [6] for SrTiO3 is reproduced in figure 3 in a format similar to next figures.

3.2. Rb2CoF4

This compound exhibits an antiferromagnetic phase transition at 107 K. This system is
believed to belong to the Ising-2d universality class. The structure of Rb2CoF4 is isomorphic
to that of K2NiF4 which is a well known two-dimensional anti-ferromagnetic system. The
two-dimensional character is related to the presence of coupled anti-ferromagnetic planes
separated by planes with weak interplanar effective interactions. Specific heat [12] and
the reduced sublattice magnetization (order parameter) obtained from neutron scattering
experiments[13] have been reported to be consistent with the critical behaviour predicted for
this universality class. In figure 4 we present the correlation of the excess entropy entropy
∆s and the square of the order parameter (the reduced sublattice magnetization σ) for this
material. The entropy has been calculated upon integration of the specific heat measured
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FIG. 4: The excess entropy of the antiferromagnetic phase transition in Rb2CoF4 versus the square

of the reduced magnetization, as obtained using data from Samuelsen[13] and Ikeda et al.[12] Upper

labels represent reduced temperature.

by Ikeda et al.[12]. The magnetization was determined from neutron scattering experiments
by Samuelsen[13]. The figure shows clearly how the entropy fails to be proportional to the
square of the order parameter.

3.3. Rb2ZnCl4

Rb2ZnCl4 presents an orthorhombic (Pnma) phase[14] above Tc ∼ 305 K. At this tem-
perature it transforms through a continuous phase transition into an incommensurately
modulated crystal with a modulation wave vector close to one third of a∗. Further below,
at 195 K the modulation wave vector locks into the exact value 1/3 a∗, and the incom-
mensurate phase transforms into an orthorrhombic commensurate ferroelectric phase with
a three-fold unit cell along the modulation. This compound belongs to the family of type
A2BX4, where this incommensurate instability is rather common, and has been extensively
studied in order to test the theoretical predictions on incommensurate phase transitions. In
1978 Bruce and Cowley[15] argued that this transition should belong to the XY–3D uni-
versality class. Since then, many workers have related their results to what is expected in
the critical zone for this universality class. For instance, Walisch et al.[16] accurately de-
termined from quadrupole perturbed NMR experiments the critical exponent of the order
parameter with full agreement with the theoretical value for the XY–3D class. According
to these results the critical zone would reach up to ǫ values of the order of 0.07. Diffraction
synchrotron measurements[17] confirmed these results and a critical region of the order of
0.1. Specific heat was also reported[18] to agree expected critical behaviour in a range up
to ǫ ∼ 0.2. More recently, Haga et al.[19] made a more comprehensive study of the specific
heat and fitted their data to an expression which includes corrections up to second order of
the asymptotic law. The fitted ǫ interval reached in this case up to ǫ = 0.1. The existence
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of observable large critical regions in incommensurate phase transitions, in comparison with
normal structural phase transitions, was predicted and justified.[20, 21] However, other au-
thors maintain that there is no theoretical ground for expecting in incommensurate systems
larger critical regions than in other structural phase transitions[1, 22] and have interpreted
for instance other NMR experiments in this compounds within a Landau approach[23].

For the present study, a new independent measurement of the specific heat of Rb2ZnCl4
was performed in a conduction calorimeter. The calorimeter has been previously described
[24] and has been used successfully for the measurements of thermal properties of single-
crystals[25]. A single crystal of 1.078 g (2.850 mmol) was measured. The sample was grown
from aqueous solution and was annealed at the high symmetry phase and then cooled down
at a low rate of 0.4Kh−1 while the heat capacity of the sample was recorded. The heat
capacity agrees previously reported data[19, 26, 27] and they show a λ-shaped peak at
about 304 K.

The background contribution to the specific heat was determined by fitting a smooth
polynomial function to data above Tc and data well below the lock-in phase transition located
at Ti = 195 K. By subtracting the background contribution, the excess specific heat was
determined and the excess entropy versus temperature was obtained through integration.
This latter could then be compared with the temperature evolution of the width ∆ν of the
NMR frequency distribution measured by Walisch et al.[16], which is a quantity proportional
to the order parameter. Due to the sharpness of the specific heat anomaly we have assumed
that Tc corresponds to the temperature of maximum specific heat. The temperature origin
of the NMR data was slightly modified to make Tc coincide. Excess entropy was set to
zero at ǫ = 0. Finally, an interpolation function was used to get the values of the NMR
frequency distribution width ∆ν at the temperatures values were entropy was determined.
Figure 5 presents the correlation between both quantities in a ∆s versus ∆ν2 graph. The
deviation from a mean field linear behaviour is rather small, but as shown in figure 1, XY–
3D asymptotic behaviour implies in this representation small changes with respect to the
Landau mean field behaviour.

4. DISCUSSION

4.1. Comparative analysis of experimental data

Figure 6 depicts the log-log plot of ∆s/Q2 versus ǫ for the three compounds discussed in
section 3. One can clearly see the deviation of both Rb2ZnCl4 and Rb2CoF4 from the Landau
mean field behaviour, in contrast with the case of SrTiO3. In accordance with the simulations
in section 2, the curves in general can be approximated to straight lines when reduced to
the interval of smaller ǫ values. Their slopes yield “experimental effective exponents” κe,
listed in table II, that can be compared with the theoretical ones listed in table I. It can be
stated that in the case of Rb2ZnCl4 the experimental effective exponent κe value coincides
with the theoretical value of the XY–3D class considering its standard deviation. It should
be noted that the values of κeT

are similar for XY–3D and Ising–3D universality classes.
However, the value β that fits the order parameter behaviour is consistent with only the
XY–3D class. The κe value for Rb2CoF4 is close to κeT

expected for Ising–2D class, with a
deviation of the order of 5%; while in SrTiO3 not only the experimental κe clearly disagrees
with the theoretical value of the Heisenberg–3D class, but its zero value indicates a classical
Landau behaviour. It should be stressed that a mere deviation from the linearity between
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FIG. 5: Excess entropy versus square of the NMR frequency distribution width ∆ν proportional to

the order parameter in Rb2ZnCl4. The straight line represents the Landau mean field behaviour.

Labels at upper x-axis represents ǫ.

Crystal ǫ fitting range Points κe

SrTiO3 10−3–10−1 22 0.006(5)

Rb2CoF4 10−3–10−2 12 0.633(6)

Rb2ZnCl4 10−3–10−2 16 0.169(6)

TABLE II: Experimental effective exponent κe, deduced from the log-log fit in figure 6, for the

systems under study. Values of experimental κe should be compared to those expected theoretically

for the universality classes κeT
listed in table I

∆s and Q2 should not be taken as a proof of fluctuation-driven critical behaviour, since a
generalized Landau potential with temperature dependent quartic and higher order terms
could explain such behaviour. It is the quantitative agreement of this deviation (measured
by the effective exponent κe) with that expected for the corresponding universality class
(κeT

), together with the agreement of the fitted exponent β that proofs the consistency of
an interpretation in terms of asymptotic critical behaviour for both the order parameter and
the specific heat.

4.2. Crossover in Rb2ZnCl4

The curve of Rb2ZnCl4 in figure 6 strongly deviates from its low ǫ linear behaviour for ǫ >
0.01 and changes then rapidly into a near horizontal straight line. This suggests a crossover
around this temperature from the XY–3D critical behaviour to a mean-field/Landau regime.
However, this interpretation would be somehow in contradiction with the fact that the
observed order parameter behaviour, used in fact for the calculation of this curve, does not
suffer any kind of crossover at ǫ ∼ 0.01 and follows the β power law with excellent agreement
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FIG. 6: Log-log plot of the ratio ∆s/Q2 —in arbitrary units— as a function of ǫ for Rb2ZnCl4,

SrTiO3, and Rb2CoF4. Straight lines show the linear fitting done in the intervals indicated in

Table 2. Resulting effective exponents κe are summarized in table II.

up to much larger ǫ values, of the order of 0.1. In any case, the curve clearly deviates for
ǫ > 0.1 from the theoretical curve for the XY–3D class in figure 2 and this can then only
be caused by the deviation beyond this ǫ value of the experimental ∆c from the theoretical
asymptotic behaviour given by equation (5) and used to produce figure 2. The reason for
such deviation could be intrinsic, i.e. the critical region for the specific heat would be then
of the order 0.01, while for the order parameter is about 0.1 in reduced temperature, but
it is also possible that the critical region were sample dependent. In order to get a more
comprehensive analysis of this phase transition we have also analyzed the measurement done
by Haga et al.[19] where the excess specific heat was fitted over 30 K, i.e. 0.1 in reduced
temperature, using a complex expression involving corrections up to second order of the
pure asymptotic regime:

∆c = Aǫ−α
(

1 + D1ǫ
∆1 + D2ǫ

)

+ Bc (7)

where α = −0.007, A = 8.153, D1 = 0.040, D2 = −0.026, Bc = 8.201, ∆1 = 0.524; where
A, D1, D2, Bc are expresed in arbitrary units. This curve is compared in figure 7 with that
obtained from a mere critical law as given in equation (5), which essentially corresponds to
the neglect of the coefficients D1 and D2 in equation (7).

The difference between both curves become obvious beyond ǫ = 0.01, showing that for
lower temperatures corrections to the asymptotic behaviour are significant. For comparison,
we have computed again the curve of ∆s/Q2 using as specific heat data the values given by
the function equation (7) as proposed by Haga. The results are presented in figure 8.

The agreement between both calculations is excellent. The approximate linear behaviour
for ǫ values smaller than 0.01 is reproduced and its slope gives a value of around 0.15 similar
to that obtained from our specific heat analysis. On the other hand, a small shift along the
ǫ-axis of the crossover region can be observed and the behaviour for larger ǫ values slightly
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FIG. 7: The solid line represents the curve (6) used by Haga et al.[19]to fit the excess specific heat

of Rb2ZnCl4. The dashed line is a simple critical law as given by equation (5) with α = −0.007 in

accordance with the XY–3D class.

differs. These differences are most probably due to the choice of the baseline for obtaining
the “excess” specific heat. The influence of the baseline is slight at small values of ǫ but
becomes very important when ǫ increases. The results presented for Rb2ZnCl4 in figure 6
correspond to a baseline described by a polynomial of minimal order fitting the specific data
well above and below the phase transition. This polynomial can be significantly changed,
by shifting the low-temperature fitting region to higher o lower temperatures, while keeping
a physically consistent baseline. The effect of this change of baseline is shown in figure 9.
It is slight for low ǫ values, where the approximate linear behaviour remains unchanged,
while the crossover to what one might consider a Landau regime (the horizontal part of the
curve in figure 6) becomes less pronounced. As shown in the figure, the change is such that
the calculated curve coincides with the theoretical one of the XY-3D class in a much larger
ǫ interval. Hence, a large uncertainty exists with respect to the actual ǫ-interval where a
crossover to the Landau behaviour does take place. But, the behaviour of the ∆s/Q2(ǫ)
relationship for ǫ < 0.01 confirming a XY-3D critical regime is robust with respect to
modifications of the baseline.
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[6] E. K. H. Salje, M. C. Gallardo, J. Jiménez, F. J. Romero, and J. del Cerro, J. Phys.: Condensed

Matter 10, 5535 (1998).

12



[7] J. Chrosch and E. K. H. Salje, Journal of Physics: Condensed Matter 34, 335 (1998).

[8] S. A. Hayward and E. K. H. Salje, Phase Transitions 68, 501 (1999).

[9] P. Heller, Rep. Prog. Phys. 30, 731 (1967).

[10] R. Griffiths, Physical Review 158, 176 (1967).

[11] M. C. Gallardo, R. Burriel, F. J. Romero, F. Gutiérrez, and E. K. H. Salje, Journal Physics:

Condensed Matter 14, 1881 (2002).

[12] H. Ikeda, I. Hatta, and M. Tanaka, J. Phys. Soc. Jpn. 40, 334 (1976).

[13] E. J. Samuelsen, Phys. Rev. Lett. 31, 936 (1973).

[14] H. Z. Cummins, Phys. Rep. 185, 211 (1990).

[15] A. Bruce and R. Cowley, J. Phys. C: Solid State Phys. 11, 3577 (1978).

[16] R. Walisch, J. Perez-Mato, and J. Peterson, Phys. Rev. B 40, 10747 (1989).

[17] M. Zinkin, D. McMorrow, J. Hill, R. Cowley, J. Lussier, A. Gibaud, G. Grubel, and C. Sutter,

Physical Review B 54, 3115 (1996).

[18] Z. Chen, Phys. Rev. B 41, 9516 (1990).

[19] H. Haga, A. Onodera, Y. Shiozaki, K. Ema, and H. Sakata, J. Phys. Soc. Jpn. 64, 822 (1995).

[20] A. Patashinskii and V. Prokovskii, Soviet Physics JETP 37, 733 (1974).

[21] V. Prokovskii, Advances in Physics 28, 595 (1979).

[22] Y. Sandler and K. Aleksandrov, Soviet Physics Solid State 25, 2045 (1983).
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