76 research outputs found

    The Use of Test Pits to Investigate Subsurface Fracturing and Glacial Stratigraphy in Tills and Other Unconsolidated Materials

    Get PDF
    Author Institution: Department of Food, Agricultural, and Biological Engineering, The Ohio State University ; Bennett and Williams Environmental Consultants Inc.Joints and fractures, common in Ohio glacial tills, often influence shallow ground water flow paths and rates. Environmental site investigations in glacial till and lacustrine sediments should include determination of the glacial stratigraphy and evaluation of the presence, extent, and density of subsurface fractures. The test pit is one approach to directly assess fracturing and stratigraphy. The design and construction of deep test pits is examined in this research report, which includes an extensive literature review and case studies from three test pit sites in Ohio. A generic design is recommended that may be used for 1-meter, 2-meter, 3-meter, or 4-meter deep test pits. Scaled drawings are included

    A Review of Target Mass Corrections

    Full text link
    With recent advances in the precision of inclusive lepton--nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large-x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections (TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections.Comment: 41 pages, 13 figures; minor updates to match published versio

    Complete Genome Sequences of Mycobacterium smegmatis Phages NihilNomen and Carlyle, Isolated in Las Vegas, Nevada

    Get PDF
    We present the complete genomes of the Mycobacterium smegmatis phages Carlyle and NihilNomen, isolated from soil in Las Vegas, Nevada. The phages were isolated and annotated by undergraduate students enrolled in the Phage Discovery course offered by the School of Life Sciences at the University of Nevada Las Vegas

    Single neutral pion production by charged-current νˉμ\bar{\nu}_\mu interactions on hydrocarbon at Eν=\langle E_\nu \rangle = 3.6 GeV

    Get PDF
    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for νˉe\bar{\nu}_e appearance oscillation experiments. The differential cross sections for π0\pi^0 momentum and production angle, for events with a single observed π0\pi^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0\pi^0 kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters

    Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA

    Get PDF
    The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the data and predicted ratios, based on charged-lepton nucleus scattering, at medium x and low neutrino energies. However, the data rate appears depleted in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high neutrino energy , is consistent with previous MINERvA observations and with the predicted onset of nuclear shadowing with the the axial-vector current in neutrino scattering
    corecore