295 research outputs found

    Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells.

    Get PDF
    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs

    Measuring Quality, Cost, and Value of IT Services

    Get PDF
    Longer version published at 2001 55th Annual Quality Congress, American Society for Quality, Charlotte, NC.Support for all users of computer hardware, software, and networks is crucial for full realization of the value that these digital intelligence amplifiers can offer a scholarly community. Bloated applications, opaque user manuals, infelicitous interactions among peripherals and the computers and networks to which they are attached, and short mean time-to-failure for some pieces of hardware provide challenges for even the most experienced users. Thus even in the beginning of the 21st Century, when it is asserted the technology has “matured,” the value that can be derived from use of IT services is directly proportional to the level of effective IT support that can be provided for the customers of these services. The focus of this narrative is how one maintains and continually improves the quality of that support

    Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage

    Get PDF
    AbstractBackground: Bulged nucleotides are common secondary structural motifs in RNA molecules and are often involved in RNA-RNA and RNA-protein interactions. RNA is selectively cleaved at bulge sites (when compared to other sites within stems) in the presence of divalent metal cations. The effects of bulge nucleotides on duplex stability and topology have been extensively investigated, but no detailed X-ray structures of bulge-containing RNA fragments have been available.Results: We have crystallized a self-complementary RNA-DNA chimeric 11-nucleotide sequence containing single-adenosine bulges under two different conditions, giving two distinct crystal forms. In both lattices the adenosines are looped out, leaving the stacking interactions in the duplex virtually unaffected. The bulges cause the duplex to kink in both cases. In one of the structures, the conformation of the bulged nucleotide places its modeled 2′-oxygen in line with the adjacent phosphate on the 3′ side, where it is poised for nucleophilic attack.Conclusions: Single adenosine bulges cause a marked opening of the normally narrow RNA major groove in both crystal structures, rendering the bases more accessible to interacting molecules compared with an intact stem. The geometries around the looped-out adenosines are different in the two crystal forms, indicating that bulges can confer considerable local plasticity on the usually rigid RNA double helix. The results provide a conformational basis for the preferential, metal-assisted self-cleavage of RNA at bulged sites

    A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.

    Get PDF
    BACKGROUND: Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization. RESULTS: We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. CONCLUSION: We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2105-15-315) contains supplementary material, which is available to authorized users

    Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    Get PDF
    Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide under water limitation and in the absence of alginate other tolerance mechanisms are activated
    • …
    corecore