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Abstract The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts
an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two
programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four
human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms
we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of
non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding
to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins
coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities.
The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation
modification, which may synchronize the transition between cell proliferation and differentiation in ESCs.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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The process of differentiation of mammalian embryonic stem
cells (ESCs) involves an increasing restriction in proliferative

Denmark. Fax: +45 45931585. capacity (Nichols and Smith, 2009), ending in cell cycle exit in
E-mail addresses: alessandro.quattrone@unitn.it (A. Quattrone), terminally differentiated cells (Coronado et al., 2013; Roccio et
brunak@cbs.dtu.dk (S. Brunak). al., 2013; Ruiz et al., 2011). For a successful differentiation
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process, the embryonic transcriptional regulatory programs
instructing proliferation should be coordinated with it.
However, the regulation of cell cycle related genes during
ESC differentiation remains unclear (Roccio et al., 2013).
Despite recent progress (Pauklin and Vallier, 2013),
whether a change in cell cycle regulation is in itself causative
of a change in developmental potential is largely unknown.
Instead, much work on cell cycle control in ESCs has focused on
features likely associated with the establishment and mainte-
nance of pluripotency.

ESCs have very unusual cell cycle structure, characterized
by a short cell division cycle time, truncated G1 and G2 phases,
and a large proportion of cells in the S phase (Hindley and
Philpott, 2013; Kapinas et al., 2013; Orford and Scadden, 2008;
White and Dalton, 2005). Several studies report controversial
observations about ESC cycle-specific cyclin-dependent kinase
(CDK) activities (Ballabeni et al, 2011; Neganova et al. 2009;
Sela et al. 2012). More broadly, several surveillance mecha-
nisms handling genome stability and cell cycle progression are
known to operate differently in ESCs (Kapinas et al. 2013;
Hussein et al. 2013; Neganova et al., 2011; Becker et al., 2010).
The most notable example of this unconventional behavior is
the overruling of the restriction (R) point, which is thought to
shield ESCs from extrinsic differentiation cues operating during
early G1 and to allow ESCs to execute full proliferation (Orford
and Scadden, 2008; Sage, 2012; Calder et al., 2013). Sup-
porting this observation, acquisition of the R point control,
presumably through the activation of the retinoblastoma-
related family of proteins, is an early event in ESC differenti-
ation (Ruiz et al., 2011; Hindley and Philpott, 2013). Moreover,
recent advances support the notion that in ESCs the subnuclear
reorganization of transcription during cell proliferation is
different from that in differentiated cells (Meuleman et al.,
2013; Aoto et al., 2006).

Importantly, the unusual cell cycle has also been shown
to positively correlate with the pluripotent state, although
the molecular mechanisms are not fully understood; for
instance, several experiments linked Oct-4, Nanog and Myc
to CDKs and their inhibitors (Singh and Dalton, 2009) and to
chromosome segregation factors (Nitzsche et al., 2011).
Additional evidence that the unconventionally fast cell
cycle kinetics in ESCs is associated with their pluripotent
state comes from the loss of this behavior upon differenti-
ation (Calder et al., 2013; White and Dalton, 2005) and the
reacquisition of it upon reprogramming (Ghule et al., 2011;
Egli et al.; 2008).

Despite these advances, an unbiased genome-wide dissec-
tion of the relationship between the programs of cell cycle
control and ESC differentiation would ideally require the
observation of in vitro synchronously differentiating ESCs.
Such an experiment is challenging for reasons including het-
erogeneous mitotic activities across an ESC colony (Jin et al,
2010), the exceedingly rapid ESC cycle and the reported
biasing effects of ESC synchronization protocols on cell death
and differentiation (Sela et al., 2012; Schneider and d'Adda di
Fagagna, 2012; Zhang et al., 2005). Hence, a preliminary in
silico approach is an attractive possibility to identify and
prioritize genes, pathways and processes for further analysis.

To address this goal, we first assembled a large body of
data on the transcriptome dynamics of the human cell cycle
and of in vitro ESCs committed to differentiation. In order
to identify links between the two programs, we combined

transcriptome-level information on periodic genes during
the human cell cycle with transcriptome-level information
on gene expression in differentiating human ESCs. We then
mined a physical interaction network using the correspond-
ing proteins in the two programs to identify a third set of
proteins (here named interface proteins) interacting with
proteins regulated in expression in both processes. As a result,
we produced a genome-wide view of the overlap as well as of
direct and indirect molecular interactions between periodic
genes during cell cycle and differentially expressed genes in
ESC differentiation. We characterized the major classes of
proteins operating at the interface between embryo prolifer-
ation and differentiation and explore their regulation by
post-translational modifications.

Materials and methods

Identification of differentially expressed genes related
to ESC differentiation fate

Our transcriptome analysis consisted of four major phases:
(a) systematic survey of literature for selection of datasets
representative of human ESC differentiation, (b) meta-analysis
of differentially expressed genes in relation to the differenti-
ation toward each germ layer, (c) evaluation of the stability
for the gene models derived from meta-analysis, and (d) val-
idation in independent datasets.

Dataset assembly

We reviewed the literature and acquired corresponding
microarray data (Supplementary Table 1) from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
or Array Express (http://www.ebi.ac.uk/arrayexpress) da-
tabases. Factors for study selection were the following: (1)
data availability in human ESC conditions preceding and
following the induction of differentiation, (2) minimal
number of three replicates for each condition, (3) raw
data access, (4) individual sample annotation as to the
differentiation protocol and the cellular differentiation
fate, and, (5) exclusion of embryoid body samples. Within
the selected studies we defined the datasets by ensuring
uniformity according to the adopted differentiation proto-
col and the annotation of differentiated samples by fate.
Eleven datasets, probing for transcriptome changes before
and after the induction of differentiation, were selected to
identify DEX genes, whereas ten independent datasets each
sampling multiple time points were set aside for the
purpose of validation of the methods for discovering DEX
genes. Datasets for DEX gene discovery and for validation
were separated by corresponding cellular differentiation
fate.

Differential expression meta-analysis

Original data were corrected for background, normalized
by the quantile method, summarized to gene level and
log,-transformed within each dataset. We calculated fixed-
effects gene regression models within each dataset using the
limma package (Smyth, 2004) and we synthesized the
models across datasets sharing common cellular differenti-
ation fate using the metafor R package (Viechtbauer, 2010).
Genes were ordered by the estimated coefficients in the
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meta-regression models for each cellular differentiate fate. We
checked for heterogeneity across the datasets by calculating
the percentage of genes where each discovery dataset was
found influential by the metafor package. The primary analysis
was based on fixed-effects models. To additionally address the
influence of heterogeneity in the discovery datasets, we
compared results from our fixed-effects meta-analysis to
those from a random-effects meta-analysis, which models
heterogeneity across datasets as random differences between
experiments.

Additional analyses

To validate the meta-regression models obtained from each
fate-specific meta-analysis, within each validation dataset we
calculated fixed-effects gene regression models by using the
initial time point as intercept in each multiple contrast cor-
responding to the additional differentiation time points. P-
values associated with each regression model coefficient of the
previously identified DEX genes were transformed into False
Discovery Rate (FDR) estimates. DEX genes were defined at
varying thresholds of the estimated coefficients in the meta-
regression models obtained from previous fate-specific meta-
analyses. A DEX gene was considered validated if: (a) we
identified at least one time point when the gene yields an
FDR lower than 0.05 and consistent direction of differential
expression in discovery and validation datasets, and (b) if
we did not identify any time point when the gene yields an
FDR lower than 0.05 and the direction of differential
expression was inconsistent with discovery data. We
calculated the fraction of DEX genes whose coefficients in
the regression models from a validation dataset did not
conflict with the coefficients in the meta-regression
models previously obtained for each cellular fate. We
note that model validation relied on validation datasets
annotated to the same fate of discovery datasets. Valida-
tion results were summarized by averaging validation
performances over all datasets identified for each cellular
fate.

To verify output stability to batch effects in each fate-
specific meta-analysis, we adjusted the data either for dataset
or for platform batch effects by using the Combat approach
(Johnson et al. 2007) and we carried out fate-specific meta-
analysis in each case. We assessed the influence of batch
effects by estimating the rate of DEX gene confirmation after
correction for batch effects. For stability quantification, DEX
genes were defined at varying thresholds of the estimated
coefficients in the meta-regression models obtained from the
original fate-specific meta-analyses. Batch correction was not
helpful, lowering validation rates, and was not used.

Our analysis of validation datasets differed from that of the
discovery ones and, in particular, the lists of DEX genes were
not derived from validation datasets. To further assess the
robustness of the DEX genes identified from the discovery
datasets, we used the validation datasets equivalently to the
discovery datasets and added a comparative analysis between
the DEX genes derived in two ways (Fisher's Exact Test).

Identification of cell cycle periodic genes

We took advantage of a previous, major study (Jensen et al.
2006) that used four microarray expression time courses for

an unsupervised, genome-wide screen of genes periodically
regulated during the mammalian cell cycle (referred to as
PER genes). The 600 periodic cell cycle human genes are
available at http://www.cyclebase.org/.

Association between cell cycle periodic genes and
ESC differentiation genes

To assess the direct association between differential expres-
sion in human ESC differentiation and cell cycle periodicity we
tested the significance of the overlap between PER and DEX
gene sets using the hypergeometric test for overrepresentation
of overlap relative to the overlap expected from two random
gene sets selected from all human genes (P-value < 0.01).

We collected protein—protein interactions (PPIs) and PPI-
related scores for the proteins corresponding to the PER and
DEX genes from the Inweb network (Lage et al. 2007). We
selected strictly binary interactions between proteins for
which we gathered evidence of expression at the protein
level in human ESCs. We derived the human ESC proteome
from quantitative mass spectrometry-based proteomics
studies (Phanstiel et al., 2011; van Hoof et al., 2009). The
relationship between the PER and DEX sets was estimated
by calculating the following quantities: the count of direct
interactions between the proteins encoded by PER and DEX
genes respectively, the count of topological first-order
interaction neighbors common to the PER and DEX sets, the
count of significant interface (INT) proteins in the Inweb
network. Significant interface proteins were defined as
proteins at the interface between any pair of PER and DEX
proteins which were shown to yield highly overlapping
interaction neighbors (Benjamini—Hochberg (BH) adjusted
hypergeometric test P < 1E—03). For each type of associ-
ation measure, statistical significance of the estimated
measure was empirically assessed by a randomization
procedure, based on the generation of 10,000 pairs of
randomized PER and DEX sets which approximately pre-
served the degree distributions of the real PER and DEX
sets.

Functional analyses

Differentially regulated genes related to fate-specific ESC
differentiation were subjected to functional enrichment
analysis of Gene Ontology Biological Process categories in
DAVID (Huang et al. 2009) by setting False Discovery Rate
(FDR) < 0.01. Similar analyses were carried out for the genes
resulting to be both PER and DEX genes and for the INT
genes.

To draw the functional map of interface versus interfaced
functionalities, significant interface proteins were ordered
according to the average score of their interactions with the
proteins encoded by the PER and DEX gene sets. The ordered
proteins were then subjected to Gene Set Enrichment
Analysis (GSEA) of Gene Ontology (GO) Biological Process
(BP) terms (FDR < 0.25). The next step was to obtain the
unshared interaction neighbors for the PER-encoded and
DEX-encoded proteins which yielded significant interaction
overlaps via proteins annotated to each GSEA-derived GO
term. For a GSEA-derived GO term, the identified PER and
DEX interaction neighbors were then subjected to Gene Set
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Enrichment Analysis (FDR < 0.25) Preliminarily to GSEA, the
unshared interaction neighbors of PER and DEX proteins
were ordered by the average score of their interactions with
the PER and DEX proteins respectively. Leading Edge Analysis
was executed in combination with GSEA in order to examine
the genes in the leading edge subsets of selected enriched GO
categories.

Finally, we estimated the semantic similarity of the resulting
GSEA terms to the representative GO terms “cell cycle” and
“cell differentiation” by three alternative measures. The
ranks obtained by using each measure were compared by
the Pearson’s correlation coefficient.

Ubiquitylation analysis

PEST regions (Rogers et al., 1986), D-box and KEN-box
motifs were predicted into the proteome by using the
"epest” and “patmatdb” tools within EMBOSS with default
parameters (Rice et al., 2000). We based the identification
of putative KEN box and D box instances on the regular
expressions K-E-N-X-X-X-N (Pfleger and Kirschner, 2000) and
R-X-X-L-X-X-X-X-N (Glotzer et al., 1991), respectively.
Protein sequences were retrieved by BioMart; the longest
sequence was retained for each protein. Degradation motif
instances were mapped onto the proteins corresponding to
the PER, DEX and INT genes. The enrichment of the PER, DEX
and INT gene sets in putative degradation targets in compar-
ison to the proteome was assessed by the hypergeometric test.

To intersect the PER, DEX and INT gene sets with the data
on differential protein ubiquitylation detected in mouse ESC
differentiation, we used a quantitative mass spectrometry

Table 1

experiment of global changes in protein ubiquitylation in
response to ESC differentiation based both on SILAC and on
label-free approaches. We collected proteins differentially
ubiquitylated using an FDR of 1% according to either approach.
Proteins were classified in more highly detected in the
pluripotent or in the differentiated state; 163 proteins were
discarded due to conflicting detection of changes by the two
approaches. The hypergeometric test was used to assess the
enrichment of the PER, DEX and INT gene sets in differentially
ubiquitylated proteins, separately for each set in comparison
to the proteome. Differentially ubiquitylated proteins were
subjected to functional enrichment analysis of GO BP catego-
ries by using the hypergeometric test (BH adjusted P < 0.05).

Results

Periodically regulated cell cycle genes overlap with
genes differentially regulated during embryonic
stem cell differentiation

To systematically probe for cross-talk between transcrip-
tional networks operating in the regulation of ESC differen-
tiation and in the cell cycle, we combined transcriptome
data from experiments performed to describe these two
programs. The initial compendium was assembled by a
systematic review and evaluation of human microarray
transcriptome studies profiling human ESC differentiation
(Table 1, Fig. 1A). Subsequent extraction of datasets of
combined undifferentiated and differentiating samples
toward a specific germ layer led to the identification of 21

Summary of datasets included in the meta-analysis. Datasets are annotated by the usage in DEX gene discovery or

validation, internal identifier, study of origin, ESC differentiation sub-lineage (as per sample annotation at the public microarray
database used for retrieval), sampled time points, microarray platform identifier and corresponding PubMed reference (when

available).

Usage Series Dataset Differentiation sub-lineage Time Platform PubMed
Discovery Ect2 GSE34201 Neural stem cell 0,10 GPL6884 22678061
Discovery Ect3 GSE34201 Neural stem cell 0,10 GPL6884 22678061
Discovery Ect4 GSE34201 Neural stem cell 0,10 GPL6884 22678061
Discovery Ect5 GSE34201 Neural stem cell 0,10 GPL6884 22678061
Discovery Ect8 GSE8590 Neural stem cell 0,21 GPL570 21142452
Discovery Endl GSE25557 Definitive endoderm 0,3 GPL6244 21151107
Discovery End5 GSE16681 Definitive endoderm 0,4 GPL7363 19807270
Discovery End6é E-MTAB-351 Definitive endoderm 0,3 GPL6883 21245162
Discovery Mes1 GSE8590 Mesodermal precursor cell 0,21 GPL570 21142452
Discovery Mes2 GSE8590 Mesodermal precursor cell 0,21 GPL570 21142452
Discovery Mes3 GSE15257 Renal precursor cell 0,14 GPL6102 20143954
Validation Ect1 GSE9940 Neural precursor cell 0,10,17 GPL570 n.a.
Validation Ect10 GSE45223 Melanocyte 0,8,11 GPL10558 n.a.
Validation Ect6 GSE28633 Mature neural cell 0,9,13,37 GPL6947 21829537
Validation Ect9 GSE45223 Neural crest cell 0,1,3,6,8,11 GPL10558 n.a.
Validation End3 GSE25046 Mature hepatocyte cell 0,5,20 GPL6947 21505074
Validation End8 E-MTAB-467 Definitive endoderm 0,1,2,3 GPL6883 21245162
Validation End9 E-MTAB-817 Pancreatic cell 0,1,2,5,8,11 GPL6947 n.a.
Validation Mes4 E-MEXP-3371 Cardiomyocyte 0,7,14 GPL6884 22020065
Validation Mes5 E-MTAB-1510 Endothelial cell 0,2,4,10 GPL6947 23618383
Validation Mes6 E-MTAB-781-464 Smooth muscle cell 0,5,17 A-MEXP-2072 22252507
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Summary of meta-analysis fixed-effects regression models of differential expression in human ESC differentiation.

(A) Summary of samples and datasets derived from studies selected for meta-analysis of differentially expressed genes in human ESC
differentiation toward distinct cellular fates. Datasets consisting of two time points, which were chosen to identify differentially
expressed genes, were separated from datasets consisting of multiple time points, which served for independent validation purpose.
(B) Validation results of fixed-effects regression models synthesized across datasets for each cellular differentiation fate. Validation
was conducted by assessment of model consistency in independent datasets consisting of multiple time points. Error bars represent
the standard errors of the average validation rates across fate-specific validation datasets. Validation analysis was conducted at

varying threshold on meta-analytic gene regression coefficients by cellular differentiation fate. The dotted line shows the number of
genes retained at each threshold.

Table 2

Summary of fixed-effects differential expression and validation analysis. From left to right: number of DEX genes from

lineage-wise meta-analyses of discovery datasets; number of genes where a dataset contributing to a lineage-wise meta-analysis

was found influential in model fit; number of DEX genes validated in at least one up to the total number of validation datasets
available per lineage.

Lineage Fixed % genes where i dataset is influential No. genes validated in N datasets
effects
DEX
Ect 2722 Ect2 Ect3 Ect4 Ect5 Ect8 N> 1 N> 2 N>3 N> 4
2.17 2.17 2.03 3.81 10.31 2032 1226 533 0
End 1768 Endl End5 Endé n.a. n.a. N> 1 N> 2 N>3
4.47 4.65 7.47 1666 1302 725
Mes 2642 Mesl Mes2 Mes3 n.a. n.a. N=>1 N>2 N=>3
4.48 4.65 7.47 1372 290 4
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datasets. Eleven datasets consisted of two time points which
gauged transcriptome changes before/after induction of
differentiation; these discovery datasets were used to
identify differentially expressed (DEX) genes. Ten datasets
consisted of multiple time points; these independent valida-
tion datasets were set aside to validate the methods for
identifying DEX genes. We emphasize that we did not use these
datasets as a filter for the discovered DEX genes. Fate-specific
differential expression results were combined across discovery
datasets by fixed-effects meta-analysis. For the purpose of
validation, we calculated, in each independent validation
dataset, the fraction of DEX genes whose differential expres-
sion was observed at an FDR lower than 0.05 and whose
direction of differential expression did not conflict with the
combined coefficient of linear regression from discovery
datasets (Fig. 1B). The validation percentages were satis-
factory for each differentiation fate, albeit lower for the
mesodermal fate (~50% at the middle threshold instead of

75%). Furthermore, inspection of DEX gene validation by
differentiation stage revealed high percentages of validat-
ed DEX genes at the time points in common to discovery/
validation datasets (Supplementary Fig. 1). The complete
analysis process is summarized in Supplementary Fig. 2.
For the purpose of identifying genes regulated both by
cell cycle and during in vitro ESC differentiation, genes
with a differential expression (combined over all discovery
datasets by meta-analysis) above a fold-change of two and
significance level of 0.01 were considered differentially
expressed (DEX) genes. Ectodermal, endodermal and meso-
dermal DEX genes amounted to 2722, 1768 and 2642 genes
respectively, with pairwise Jaccard indices ranging from 0.17
to 0.23 (Fisher's Exact Test, P-value < E-16) and 406 genes
common to all fates (Table 2, Supplementary Table 2).
Although some evidence of heterogeneity across discovery
datasets was detected, we confirmed that it did not affect the
stability of the DEX gene identification (Supplementary
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Figure 2

Periodically regulated cell cycle genes overlap with genes differentially regulated during embryonic stem cell differentiation.

(A) Table showing the Jaccard index between PER and DEX genes identified per cellular differentiation fate. The accompanying *’
symbols represent the statistical significance of the overlap according to the legend. The table also reports the median Jaccard indices
and median absolute deviations which were obtained by 10,000 randomizations of PER and DEX gene sets. (B) Enrichment of overlapping
PER and DEX genes in Gene Ontology (GO) Biological Processes (BP) categories by cellular differentiation fate (FDR < 0.01). Dot size
reflects the Jaccard index between overlapping genes and GO BP gene sets. (C) Breakdown of overlapping PER and DEX genes by

molecular class.
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information, Supplementary Tables 3, 4). Functional enrich-
ment analysis of differentially regulated genes revealed
phenotypic changes consistent with the cellular differentiation
fates, supporting the high quality of DEX genes yielded by our
analysis (Supplementary Fig. 3).

We then derived a quality-controlled set of 600 period-
ically regulated (PER) genes in the human cell cycle from a
curated, comprehensive repository of cell cycle experiments
and analysis results (Gauthier et al, 2010). The integration
between cell cycle progression and ESC differentiation could
potentially be manifested by genes co-regulated by the two
programs, i.e., shifting from oscillation during cell prolifera-
tion toward a polarized increase or decrease during differen-
tiation. To verify this hypothesis, we assessed the overlap
between cell cycle regulated genes and genes regulated during
in vitro ESC differentiation, and found that this overlap was
greater than expected by chance for each differentiation fate
(hypergeometric test P-value < 0.01, Fig. 2A). Functional
enrichment analysis of the overlapping genes primarily high-
lighted cell cycle related functionalities, such as DNA replica-
tion and cell division (Fig. 2B). The overlapping genes were
mainly found to be cell cycle control genes including cyclins
(CCNE2, CCNB1, CCNA2), replication factors (PCNA, CDC6,
MCM6, CKS2, CKS1B) and mitotic spindle assembly factors such
as TACC3 and CDC20. The overall range of functions was
broader. Indeed the genes detected in each fate-specific
overlap between PER and DEX sets included transcription
factors, GTPases, heat shock proteins, and cytoskeletal and
transport proteins (Fig. 2C). Remarkably, dual roles in cell
proliferation and differentiation were previously described for
several overlapping genes identified in our analysis (Supple-
mentary Table 5) such as the DNA replication inhibitor GMNN,
which is known to regulate embryonic transition from
pluripotency to early multi-lineage commitment (Lim et al.,
2011), and the H1 histone family member H1FO, whose
depletion was shown to affect mitotic chromosome architec-
ture and segregation (Maresca et al., 2005) and to reduce
developmental gene expression (Zhang et al., 2012). Results
were robust to the use of alternative regression models
(Supplementary information, Supplementary Figs. 4, 5) and
choice of datasets for DEX gene identification (Supplementary
information, Supplementary Table 6, Supplementary Figs. 6,
7). Furthermore, as a major result of our careful identification
of fate-specific DEX genes, we noted that the significance of
the overlap between cell cycle regulated genes and genes
regulated during in vitro ESC differentiation depended on the
differentiation fate (Figs. 2A, B). To clarify the overlap fate
specificity, we conducted fixed-effects meta-regression anal-
ysis using samples from all lineages (Supplementary Fig. 8).
This approach showed lack of significant overlap and lack of
functional enrichment for the overlapping genes and did not
support the possibility that gene co-regulation during the
processes of cell cycling and of ESC differentiation may be
fate-unspecific. Rationalizing the highly significant overlap
observed between the cell cycle regulated genes and meso-
dermal DEX genes deserves future investigation. Our results
indicate that gene co-regulation during the processes of cell
cycling and of ESC differentiation may be fate-specific.

We next extended our analysis to explore the potential
network infrastructure which may help to integrate the
programs of cell proliferation and differentiation by means
of genes which are neither periodical nor differentially

expressed during ESC commitment. To verify this possibility
we used Inweb, an updated high quality human protein
interaction map (Lage et al, 2007) consisting of protein—
protein interactions, and we extracted interaction neigh-
bors of the proteins coded for by the two PER and DEX gene
sets. Some of these bridging interface genes might be used
by ESCs to couple expression changes determining cell cycle
dynamics with those promoting exit from pluripotency and
induction of differentiation.

Interface genes linking cell cycle and embryonic stem
cell differentiation code for central network proteins

From Inweb we selected direct physical protein—protein
interactions (PPIs) where both proteins were required to be
expressed in human ESCs; PPIs finally involved 171, 163 and
175 proteins encoded by PER genes and 593, 359 and 852
proteins encoded by DEX genes in the ectodermal, endoder-
mal and mesodermal fates, respectively. By approximate
node degree-preserving randomization of the PER and DEX
sets, network analysis revealed a total number of direct
interactions ranging from 407 to 1483 according to the
cellular differentiation fate. Direct interaction counts did
not indicate a strong tendency for these two sets to directly
interact with each other more than or less than expected by
chance (Supplementary Fig. 9).

Therefore, we sought to better understand the potential
cross-talk between the PER and DEX gene sets by analyzing
their interface genes, i.e. the direct interaction neighbors
common to the proteins encoded by the PER and DEX genes.
In doing so, the PER and DEX sets were found to share a total
of INT genes ranging from 1229 to 1458 according to the
cellular differentiation fate. Interestingly, by approximate
node degree-preserving randomization of the PER and DEX
sets, the number of INT genes was found to be significantly
fewer than would be expected by chance (underrepresenta-
tion P-values ranged from 1E—04 to 2E—03). Moreover, the
network centrality of the INT genes was found to be
significantly higher in comparison to the centrality measured
from similarly defined interface genes between randomized
PER and DEX sets (interface degree P-value = 1E-04
irrespective of the cellular differentiation fate). Both the
unexpectedly low number of INT genes and their tendency to
code for central node proteins in the protein interaction
network supported their interface status.

In line with this observation, we focused on the PER and
DEX gene pairs featuring significantly highly overlapping
interaction neighbors (BH adjusted hypergeometric test
P-value < 1E-03) which we refer to as to the interface
(INT) genes (Supplementary Fig. 9). The INT genes derived
from fate-specific analysis amounted to 1290 out of which
513 INT genes were identified in all fates whereas 184, 74
and 139 INT genes were uniquely identified in the ectodermal,
endodermal and mesodermal cellular fates, respectively.

Unanticipated gene functionalities are overrepre-
sented at the interface between cell cycle and
embryonic stem cell differentiation

Since previous fate-specific analyses identified both fate-
unspecific and fate-specific INT proteins, we separately
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conducted functional enrichment analyses (FDR < 0.01) of
the fate-unspecific INT proteins and of the INT proteins
uniquely identified for each fate. Overrepresented function-
alities in the common INT proteins included DNA and RNA
metabolism related processes, nucleocytoplasmic transport,
protein complex assembly, cytoskeleton organization and
cell cycle (Table 3). Functional analyses of fate-specific INT
proteins provided fairly distinct results, thus extending the
fate-specificity observed in the overlapping PER and DEX
genes to the INT proteins. The ectoderm-specific INT proteins
confirmed the enrichment in functionalities related to RNA
metabolism; in particular, the ectoderm-specific INT proteins
were found to regulate RNA splicing (e.g. RBM28, PTBP2,
several heterogeneous nuclear ribonucleoproteins) and RNA
surveillance (EXOSC2, LSM3, UPF3B). The mesoderm-specific
INT proteins instead were enriched in chromatin modeling
proteins among which L3MBTL2 whose interaction with a
Polycomb Repressive Complex 1 (PCR1)-related complex is
tightly linked to its essential requirement in the control of ESC
proliferation and differentiation programs (Qin et al., 2012)
and KDM5B which regulates H3K4 methylation at developmen-
tal genes during ESC differentiation (Kidder et al., 2014).
Finally, the endoderm-specific INT proteins were not enriched
in any fate-specific functionality (Supplementary Table 7).
Our results therefore suggest insights into the overall struc-
ture of fate-specificity in the coordination between cell cycle
control and ESC differentiation.

Furthermore, we adopted an alternative functional prior-
itization of INT proteins which explicitly accounted for the
scores of the interactions by which the INT proteins were
found to connect PER and DEX proteins to each other. More
precisely, we applied gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) to the INT proteins ordered by the
average score of their interactions involving proteins encoded
by PER and DEX genes (FDR < 0.25).

In the following, we selected one of the most interesting
INT functional categories to suggest a systematic means of

using interaction data to study the PER and DEX related
functionalities which may be connected by similar func-
tionally annotated INT proteins. For an INT functional
annotation, we selected the PER and DEX proteins con-
nected by the annotated INT proteins and applied GSEA to
the interaction partners that were not found to be in
common between the PER and DEX proteins and that were
ordered by the scores of the interactions with PER and DEX
proteins, respectively. The functional analysis process is
summarized in Fig. 3.

Functionalities overrepresented in INT proteins were
prioritized in the order of relatedness to cell cycle and cell
differentiation (Supplementary Table 8) by applying several
semantic similarity scores with highly consistent results
(Supplementary Table 9). An unexpected interface function-
al category was nuclear transport, which was due to the
presence of 26 INT proteins at the interface between 44 PER
and 153 DEX proteins. These interface proteins included
nucleoporins (NUPs), transport receptors of the importin «
and p families and RNA binding proteins, such as HNRNPAT1,
SAM68 and RAE1 which facilitate transport through the
nuclear membrane (Supplementary Table 10). Interestingly,
further examination of the identified NUPs, which included
both members of the NUP107-160 nuclear pore sub-complex
(e.g. NUP133, NUP160) and nuclear ring components such as
NUP214, uncovered an emerging dual role in cell cycle (e.g.
spindle assembly) (Mishra et al., 2010) and in development
related events (Lupu et al., 2008; Sapkota et al., 2007).
Additional characterization of INT proteins in relation to
dual functional roles in the regulation of cell cycle and cell
differentiation is summarized in Supplementary Table 10.

Leading edge analysis of GO categories overrepresented
in the 254 PER neighbors isolated 36 genes the majority of
which were protein kinases, phosphatases and ubiquitin-
conjugating proteins, with known roles in mitotic cell cycle
control (PKN2, UBE2C, UBE2D3 and UBE4B) and in signaling
pathways such as the RAF-MEK-ERK (Von Kriegsheim et al.,

Table 3 Lineage-specificity of interface protein functionalities. The table reports the FDR values of the GO Biological Process
categories which resulted overrepresented in the interface proteins common to all cellular fates or in the fate-specific interface
proteins.
GO BP term Ectoderm interface Endoderm interface Mesoderm interface Common
specific specific specific interface
Chromosome organization n.a. n.a. n.a. 1.06E—-15
mRNA processing 4.46E—-05 n.a. n.a. 1.28E-15
Cell cycle n.a. n.a. n.a. 2.35E-14
Translation n.a. n.a. n.a. 1.89E-13
Macromolecular complex assembly n.a. n.a. n.a. 7.66E—-13
Cytoskeleton organization n.a. n.a. n.a. 3.95E-10
Protein complex assembly n.a. n.a. n.a. 8.87E-08
DNA metabolic process n.a. n.a. n.a. 3.06E-06
Ribosome biogenesis n.a. n.a. n.a. 0.0003
Cell division n.a. n.a. n.a. 0.0007
Protein targeting n.a. n.a. n.a. 0.0007
Nucleocytoplasmic transport n.a. n.a. n.a. 0.0031
Protein folding n.a. n.a. n.a. 0.0055
RNA splicing 6.61E-06 n.a. n.a. 0.0000
Chromatin modification n.a. n.a. 0.0064 n.a.
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Figure 3

Functional analysis flowchart. Our analysis combines the following major phases: (a) ordering of significant INT proteins

by the average score of the interactions with PER- and DEX-encoded proteins, (b) identification of INT functional categories by gene
set enrichment analysis of ordered INT proteins, (c) identification of INT proteins annotated to a functional category and
identification of the PER, DEX protein pairs with significant interaction neighbors overlap via these INT proteins, and (d) gene set
enrichment analyses of the interaction neighbors of PER proteins that are not shared with DEX proteins and vice versa. Unshared
interaction neighbors are ordered by the average score of their interactions with PER or DEX proteins.

2006) pathway, the Janus-activated kinase (JAK) and SRC
family kinase (SFK) pathways (Shields et al., 2008) (Supple-
mentary Table 11).

A similar analysis of overrepresented GO categories in the
1255 DEX neighbors identified 153 genes covering a broad
range of functions and including, in particular, cell cycle
genes and developmental genes (Supplementary Table
12). Interestingly, the cell cycle genes were previously
shown to be involved in development either by regulating
transcription factors, which are responsible for maintain-
ing ESC identity (Card et al. 2008; Deshpande et al. 2009)
or promoting differentiation (Morawski et al. 2013), or by
regulating signaling pathways, such as the WNT pathway,
which controls cell fate determination (Pera and Tam,
2010). Developmental genes predominantly consisted of
transcription factors (e.g. FOXO4, GLI2, RELA, SALL1, SOX15
and STAT3) and co-factors (e.g. FHL3, LDB1, SMARCA1), and
were accompanied by a number of protein kinases, membrane-
associated proteins and small GTPases. Our results, therefore,
suggest the intriguing possibility that regulated nuclear-
cytoplasmic transport affords mechanic and/or regulatory
activities (Raices and D'Angelo, 2012) within pathways trig-
gered by external signals in order to reconcile the demands for
embryonic stem cell division and differentiation.

Post-translational modification is a frequent regula-
tory feature of interface proteins

By the way in which they were identified, we know that the
INT genes are not transcriptionally regulated during either
the cell cycle or ESC differentiation. We therefore analyzed
the INT proteins in terms of their post-translational modifica-
tions, which could explain how they regulate the assembly or
disassembly of complexes between the proteins encoded by

PER and DEX genes. Protein ubiquitylation can modify protein
stability, protein subcellular localization (Berlin et al., 2010)
or the affinity of protein—protein interactions (Sundd, 2012;
Markin et al., 2010). Furthermore, ubiquitylation is known to
influence a variety of cell cycle aspects including the cell cycle
machinery and cell cycle checkpoints. Therefore, we set out
to investigate ubiquitin-dependent regulation in the INT
proteins.

PEST sequences, D boxes and KEN boxes, which are the
most prominent motifs recognized by ubiquitin ligase com-
plexes, were predicted in the proteome and subsequently
mapped onto the protein sequences corresponding to PER,
DEX and INT genes. By independently contrasting each set
against the proteome, we confirmed the known regulatory
role of ubiquitylation in protein coded by PER genes (Jensen et
al., 2006) (Fig. 4A). Nonetheless, a more important finding
was the extension of substantial enrichment in ubiquitylation
motifs to the INT proteins relatively to whole proteome,
irrespectively of the cellular fate context where INT proteins
were defined (Fig. 4A). By closer inspection, the KEN box motif
was found to be uniquely overrepresented in the PER set, the
D-box motif in the DEX set whereas the INT set was enriched in
PEST regions.

To further confirm the results of the computational motif
analysis in the context of ESC differentiation, we cross-
referenced our results to a quantitative mass spectrometry
experiment of global changes in protein ubiquitylation after
4 days of ESC differentiation induced by LIF withdrawal and
retinoic acid addition (Buckley et al. 2012). The number of INT
proteins with ubiquitylation-dependent regulation evidence
resulted to be significantly higher than expected by chance
(Fig. 4A). Therefore, both sequence-based prediction and
mass spectrometry-based data agree to suggest ubiquitylation
as a major transcription-independent regulatory system for
the INT proteins.
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Interface proteins are targeted for ubiquitylation regulation. (A) The bar plot shows the percentages of proteins

encoded by the DEG, PER and INT genes and which were found to be ubiquitylated by motif analysis or by experimental evidence
in ESC differentiation. The accompanying “*’ symbols represent the enrichment statistical significance according to the legend.
(B) Functional characterization of interface proteins previously observed to be differentially ubiquitylated. GO categories are
ordered by the stability of overrepresentation in lineage-specific analyses.

To study the role of regulated ubiquitylation of the INT
proteins in relation to cellular fate, we submitted the INT
proteins isolated by the quantitative mass spectrometry
experiment to functional enrichment analyses (BH adjusted
hypergeometric test P-value < 0.05). The interface func-
tionalities which were invariably identified in relation to
each cellular fate occurred to be tightly associated with
homeostasis of the proteome (Fig. 4B, Supplementary
Table 13). Indeed the identified interface proteins were
found to be part of a complex network of cellular ma-
chineries which monitor protein life cycle from protein
production by translation-dependent regulatory pathways

(e.g. nonsense-mediated decay, polysomal recruitment,
regulation of translational initiation), to protein folding
(e.g. TRiC components), protein localization (in particular
nuclear-cytoplasmic transport) up to protein elimination
by the ubiquitin proteasome system of which we isolated
11 subunits of the 19S regulator, 10 subunits of the 20S
core and 4 E3 ligase complex subunits. Remarkably, we
noticed that ubiquitylation-dependent regulation of
various interface proteins has been previously shown to have
a functional role in regulation of the cell cycle and cell
differentiation. This is the case for the deubiquitylating
enzyme PSMD14 whose enzymatic activity is essential
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for ESC pluripotency (Buckley et al. 2012), the histone
demethylase KDM4A, and the transcriptional regulatory
TRAPP whose protein turnover associates with replication
timing and chromatin condensation during mitotic cell cycle
(Van Rechem et al., 2011; Ichim et al. 2014).

3. Discussion

A precise understanding of the relationship between the
integrated regulation of ESC proliferation and differentiation
might possibly be achieved through a quantitative distinction
of the relative contributions of these two programs in the
transcriptome variation measured in synchronously differen-
tiating ESCs. However, the achievement of this experimental
objective is hampered by several issues, which include the
unusually rapid division of these cells (Kapinas et al. 2013), the
heterogeneity of cell cycle profiles in self-renewal ESCs and
the inefficiency of the synchronization protocols affected by
side-effects and by cell death (Jin et al., 2010). Therefore, to
shed light on the possibility that transcriptome variations
during the cell cycle is systematically coordinated with those
promoting ESC transition from self-renewal to differentiation,
we devised an in silico approach involving meta-analysis of
multiple datasets of in vitro transcriptome data independently
measured in synchronously dividing cells or in differentiating
ESCs. First we attained a high-quality resource of fate-specific
differentially regulated genes in in vitro human ESC differen-
tiation by taking advantage of synthesized results from meta-
analysis of previously unconnected datasets. The cell cycle
periodically regulated genes were acquired from previous
analysis of human cell cycle transcriptome data in somatic cell
culture models. Such data represent certainly an approxima-
tion of the cell cycle in ESCs. Since a systematic assay of cell
cycle transcriptome changes in ESCs is not available, the PER
genes, albeit clearly imperfect, are used as a proxy to derive
potential, general relationships between the cell cycle and
differentiation. We showed that the genes oscillating during
the cell cycle overlap with differentially regulated genes
during in vitro ESC differentiation and we showed that the
extent of this overlap is differentiation fate-specific. Over-
lapping genes are robust as they were confirmed in a variety of
analyses and represent valuable candidates for future studies,
as they can enable the transition from ESC self-renewal
to differentiation by shifting from oscillation during cell
proliferation toward a polarized increase or decrease during
differentiation.

Furthermore, systems-wide examination of network rela-
tionships between the PER and DEX sets uncovered a class of
INT proteins which share the ability to interact with proteins
from the PER and DEX sets and thus help coordinate their
activities. The INT proteins tended, in comparison to the
proteome in general, to be strongly regulated at the post-
translational level, namely by ubiquitylation, rather than at
the transcriptional level. Further studies may explore the
possibility of other PTMs to be significantly overrepresented
across the INT proteins.

The ontological functional analysis of the INT proteins
supported fate specificity in the INT mechanisms integrating
the cell cycle and ESC differentiation. Furthermore, cellular
processes which were not obviously related to either the cell
cycle or to cell differentiation were highlighted. A notable

example of unexpected INT proteins was provided by the
identification of several proteins of the nuclear-cytoplasmic
transport. Selective nuclear transport of RNAs and regulatory
factors is the most obvious route to help coordinate gene
activity shifts underlying cell cycle control or differentiation.
Importantly, context-dependent transport paths through the
nuclear pore complex require distinct transport factors
supporting potential regulatory roles for these proteins. For
example, a previous study indicated that switching the subtype
of importin-a, an INT protein, regulates mouse ESC differen-
tiation through the selective nuclear import of the transcrip-
tion factors Oct3/4, BRN2 and SOX2 (Yasuhara et al. 2007).

Furthermore, we observed INT proteins clearly connected
to cell cycle and differentiation. For instance, cyclin D1
(CCND1), which restricts the activity of Smad2/3 resulting
in a switch from endoderm to neuroectoderm potential
(Pauklin and Vallier, 2013), was an ectoderm and mesoderm
but not endoderm INT protein. CDK4 and CDK6, which were
activated by CCND1, were correctly identified among CCND1
protein interaction neighbors and, interestingly, CDK6 was
up-regulated in ectoderm-fated ESCs.

This systematic work can be viewed as a source of hy-
potheses which may drive future experiments in stem cell
biology. It is obvious, however, that attempts to control and
manage stem cell differentiation also may benefit from it.
Indeed, understanding how cell cycle mediates the transition
between the transcriptional programs generating differentiat-
ed cells will eventually allow us to progress in the controlled ex
vivo production of therapeutically relevant cell types. Along
this line some recent experiments have shown that both
directed differentiation of ESCs and reprogramming of somatic
cells can be enhanced by reliable methods for enriching ESCs at
specific cell cycle phases (Chetty et al, 2013). Recently, cell
cycle manipulations of ESCs, albeit in mouse, were found to
strongly affect differentiation (Li and Kirschner, 2014). It is
therefore possible that the insights provided by our analysis
could lead to practical applications in regenerative medicine.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.scr.2014.07.008.
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