1,726 research outputs found

    Controls on buffering and coastal acidification in a temperate estuary

    Get PDF
    Estuaries may be uniquely susceptible to the combined acidification pressures of atmospherically driven ocean acidification (OA), biologically driven CO2 inputs from the estuary itself, and terrestrially derived freshwater inputs. This study utilized continuous measurements of total alkalinity (TA) and the partial pressure of carbon dioxide (pCO2) from the mouth of Great Bay, a temperate northeastern U.S. estuary, to examine the potential influences of endmember mixing and biogeochemical transformation upon estuary buffering capacity (Ī²ā€“H). Observations were collected hourly over 28 months representing all seasons between May 2016 and December 2019. Results indicated that endmember mixing explained most of the observed variability in TA and dissolved inorganic carbon (DIC), concentrations of which varied strongly with season. For much of the year, mixing dictated the relative proportions of salinity-normalized TA and DIC as well, but a fall season shift in these proportions indicated that aerobic respiration was observed, which would decrease Ī²ā€“H by decreasing TA and increasing DIC. However, fall was also the season of weakest statistical correspondence between salinity and both TA and DIC, as well as the overall highest salinity, TA and Ī²ā€“H. Potential biogeochemically driven Ī²ā€“H decreases were overshadowed by increased buffering capacity supplied by coastal ocean water. A simple modeling exercise showed that mixing processes controlled most monthly changes in TA and DIC, obscuring impacts from airā€“sea exchange or metabolic processes. Advective mixing contributions may be as important as biogeochemically driven changes to observe when evaluating local estuarine and coastal OA

    Solving the mystery of booming sand dunes

    Get PDF
    Desert booming can be heard after a natural slumping event or during a sand avalanche generated by humans sliding down the slip face of a large dune. The sound is remarkable because it is composed of one dominant audible frequency (70 to 105 Hz) plus several higher harmonics. This study challenges earlier reports that the dunesā€™ frequency is a function of average grain size by demonstrating through extensive field measurements that the booming frequency results from a natural waveguide associated with the dune. The booming frequency is fixed by the depth of the surficial layer of dry loose sand that is sandwiched between two regions of higher compressional body wave velocity. This letter presents measurements of the booming frequencies, compressional wave velocities, depth of surficial layer, along with an analytical prediction of the frequency based on constructive interference of propagating waves generated by avalanching along the dune surface

    Reply to comment by B. Andreotti et al. on "Solving the mystery of booming sand dunes"

    Get PDF
    This reply addresses three main issues raised in the comment of Andreotti et al. [2008]. First, the turning of ray paths in a granular material does not preclude the propagation of body waves and the resonance condition described by Vriend et al. [2007]. The waveguide model still holds in the dune for the observed velocities, even with a velocity increase with depth as implied by Andreotti et al. [2008]. Secondly, the method of initiation of spontaneous avalanching does not influence the booming frequency. The frequency is independent of the source once sustained booming starts; it depends on the subsurface structure of the dune. Thirdly, if all data points from Vriend et al. [2007] are included in the analysis (and not an average or selection), no correlation is observed between the sustained booming frequency and average particle diameter

    Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of Maine

    Get PDF
    Ocean surface layer carbon dioxide (CO2) data collected in the Gulf of Maine from 2004 to 2008 are presented. Monthly shipboard observations are combined with additional higherā€resolution CO2 observations to characterize CO2 fugacity ( fCO2) and CO2 flux over hourly to interannual time scales. Observed fCO2 andCO2 flux dynamics are dominated by a seasonal cycle, with a large spring influx of CO2 and a fallā€toā€winter efflux back to the atmosphere. The temporal results at inner, middle, and outer shelf locations are highly correlated, and observed spatial variability is generally small relative to the monthly to seasonal temporal changes. The averaged annual flux is in near balance and is a net source of carbon to the atmosphere over 5 years, with a value of +0.38 mol māˆ’2 yrāˆ’1. However, moderate interannual variation is also observed, where years 2005 and 2007 represent cases of regional source (+0.71) and sink (āˆ’0.11) anomalies. We use moored daily CO2 measurements to quantify aliasing due to temporal undersampling, an important error budget term that is typically unresolved. The uncertainty of our derived annual flux measurement is Ā±0.26 mol māˆ’2 yrāˆ’1 and is dominated by this aliasing term. Comparison of results to the neighboring Middle and South Atlantic Bight coastal shelf systems indicates that the Gulf of Maine exhibits a similar annual cycle and range of oceanic fCO2 magnitude but differs in the seasonal phase. It also differs by enhanced fCO2 controls by factors other than temperatureā€driven solubility, including biological drawdown, fallā€toā€winter vertical mixing, and river runoff

    The Pukao of Rapa Nui (Easter Island, Chile)

    Get PDF
    Structure from motion (SfM) mapping is a photogrammetric technique that offers a cost-effective means of creating three-dimensional visual representations from overlapping digital photographs. The technique has seen increasing uses for documenting the archaeological record. We demonstrate the utility of SfM through a study of the form of red scoria bodies known as pukao from Rapa Nui (Easter Island, Chile). We study 50 pukao that once adorned the massive statues (moai) of Rapa Nui, and compare them to 13 additional pukao located in Puna Pau: the islandā€™s red scoria pukao quarry. Through SfM, we demonstrate that the majority of these bodies have petroglyphs and other surface features that are relevant to archaeological explanation and are currently at risk of continued degradation

    Using Structure from Motion Mapping to Record and Analyze Details of the Colossal Hats (Pukao) of Monumental Statues on Rapa Nui (Easter Island)

    Get PDF
    Structure from motion (SfM) mapping is a photogrammetric technique that offers a cost-effective means of creating three-dimensional (3-D) visual representations from overlapping digital photographs. The technique is now used more frequently to document the archaeological record. We demonstrate the utility of SfM by studying red scoria bodies known as pukao from Rapa Nui (Easter Island, Chile). We created 3-D images of 50 pukao that once adorned the massive statues (moai) of Rapa Nui and compare them to 13 additional pukao located in Puna Pau, the islandā€™s red scoria pukao quarry. Through SfM, we demonstrate that the majority of these bodies have petroglyphs and other surface features that are relevant to archaeological explanation and are currently at risk of continued degradation

    Variability of USA East Coast surface total alkalinity distributions revealed by automated instrument measurements

    Get PDF
    Seawater total alkalinity (TA) is one important determinant used to monitor the ocean carbon cycle, whose spatial distributions have previously been characterized along the United States East Coast via discrete bottle samples. Using these data, several regional models for TA retrievals based on practical salinity (S) have been developed. Broad-scale seasonal or interannual variations, however, are not well resolved in these models and existing data are highly seasonally biased. This study reports findings from the first long duration deployment of a new, commercially available TA titrator aboard a research vessel and the continuous underway surface TA measurements produced. The instrument, operated on seven East Coast USA cruises during six months in 2017 and for two months in 2018 on the summertime East Coast Ocean Acidification survey (ECOA-2), collected a total of nearly 11,000 surface TA measurements. Data from these efforts, along with a newly synthesized set of more than 11,000 regional surface TA observations, are analyzed to re-examine distributions of TA and S along the United States East Coast. Overall, regional distributions of S and TA generally agreed with prior findings, but linear TA:S regressions varied markedly over time and deviated from previously developed models. This variability is likely due to a combination of biological, seasonal, and episodic influences and indicates that substantial errors of Ā±10ā€“20 Ī¼mol kgāˆ’1 in TA estimation from S can be expected due to these factors. This finding has likely implications for numerical ecosystem modeling and inorganic carbon system calculations. New results presented in this paper provide refined surface TA:S relationships, present more data in space and time, and improve TA modeling uncertainty

    On the Prediction of Extreme Ecological Events

    Get PDF
    Ecological studies often focus on average effects of environmental factors, but ecological dynamics may depend as much upon environmental extremes. Ecology would therefore benefit from the ability to predict the frequency and severity of extreme environmental events. Some extreme events (e.g., earthquakes) are simple events: either they happen or they don\u27t, and they are generally difficult to predict. In contrast, extreme ecological events are often compound events, resulting from the chance coincidence of run-of-the-mill factors. Here we present an environmental bootstrap method for resampling short-term environmental data (rolling the environmental dice) to calculate an ensemble of hypothetical time series that embodies how the physical environment could potentially play out differently. We use this ensemble in conjunction with mechanistic models of physiological processes to analyze the biological consequences of environmental extremes. Our resampling method provides details of these consequences that would be difficult to obtain otherwise, and our methodology can be applied to a wide variety of ecological systems. Here, we apply this approach to calculate return times for extreme hydrodynamic and thermal events on intertidal rocky shores. Our results demonstrate that the co-occurrence of normal events can indeed lead to environmental extremes, and that these extremes can cause disturbance. For example, the limpet Lottia gigantea and the mussel Mytilus californianus are co-dominant competitors for space on wave-swept rocky shores, but their response to extreme environmental events differ. Limpet mortality can vary drastically through time. Average yearly maximum body temperature of L. gigantea on horizontal surfaces is low, sufficient to kill fewer than 5% of individuals, but on rare occasions environmental factors align by chance to induce temperatures sufficient to kill \u3e99% of limpets. In contrast, mussels do not exhibit large temporal variation in the physical disturbance caused by breaking waves, and this difference in the pattern of disturbance may have ecological consequences for these competing species. The effect of environmental extremes is under added scrutiny as the frequency of extreme events increases in response to anthropogenically forced climate change. Our method can be used to discriminate between chance events and those caused by long-term shifts in climate
    • ā€¦
    corecore