1,221 research outputs found

    RGS9, a GTPase Accelerator for Phototransduction

    Get PDF
    AbstractThe rod outer segment phototransduction GAP (GTPase-accelerating protein) has been identified as RGS9, a member of the RGS family of Gα GAPs. RGS9 mRNA expression is specific for photoreceptor cells, and RGS9 protein colocalizes with other phototransduction components to photoreceptor outer segment membranes. The RGS domain of RGS9 accelerates GTP hydrolysis by the visual G protein transducin (Gαt), and this acceleration is enhanced by the γ subunit of the phototransduction effector cGMP phosphodiesterase (PDEγ). These unique properties of RGS9 match those of the rod outer segment GAP and implicate it as a key element in the recovery phase of visual transduction

    Near-UV Observations of CS29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes

    Full text link
    Employing spectra obtained with the new Keck I HIRES near-UV sensitive detector, we have performed a comprehensive chemical composition analysis of the binary blue metal-poor star CS29497-030. Abundances for 29 elements and upper limits for an additional seven have been derived, concentrating on elements largely produced via neutron-capture nucleosynthesis. Included in our analysis are the two elements that define the termination point of the slow neutron-capture process, lead and bismuth. We determine an extremely high value of [Pb/Fe] = +3.65 +/- 0.07 (sigma = 0.13) from three features, supporting the single-feature result obtained in previous studies. We also detect Bi for the first time in a metal-poor star. Our derived Bi/Pb ratio is in accord with those predicted from the most recent FRANEC calculations of the slow neutron-capture process in low-mass AGB stars. We find that the neutron-capture elemental abundances of CS29497-030 are best explained by an AGB model that also includes very significant amounts of pre-enrichment of rapid neutron-capture process material in the protostellar cloud out of which the CS29497-030 binary system formed. Thus, CS29497-030 is both an ``r+s'' and ``extrinsic AGB'' star. Furthermore, we find that the mass of the AGB model can be further constrained by the abundance of the light odd-element [Na/Fe] which is sensitive to the neutron excess.Comment: 7 pages = 4 + 2 colour encapsulated postscript figures + 1 table; to appear in ApJ Letters; additional jpeg figure available at ftp://www.astro.caltech.edu/users/iii/cs2949703

    The Radio Recovery of SN 1970G: The Continuing Radio Evolution of SN 1970G

    Full text link
    Using the Very Large Array, we have detected radio emission from the site of SN 1970G in the Sc galaxy M101. These observations are 31 years after the supernova event, making SN 1970G the longest monitored radio supernova. With flux densities of 0.12 +/- 0.020 mJy at 6 cm and 0.16 +/- 0.015 mJy at 20 cm, the spectral index of -0.24 +/- 0.20 appears to have flattened somewhat when compared with the previously reported value of -0.56 +/- 0.11, taken in 1990. The radio emission at 20 cm has decayed since the 1990 observations with a power-law index of beta_20cm = -0.28 +/- 0.13. We discuss the radio properties of this source and compare them to those of other Type II radio supernovae.Comment: 11 pages, 1 table and 2 figures; To appear in Astrophysical Journal Letter

    Probing the Neutron-Capture Nucleosynthesis History of Galactic Matter

    Full text link
    The heavy elements formed by neutron capture processes have an interesting history from which we can extract useful clues to and constraints upon both the characteristics of the processes themselves and the star formation and nucleosynthesis history of Galactic matter. Of particular interest in this regard are the heavy element compositions of extremely metal-deficient stars. At metallicities [Fe/H] <= -2.5, the elements in the mass region past barium (A >= 130-140 have been found (in non carbon-rich stars) to be pure r-process products. The identification of an environment provided by massive stars and associated Type II supernovae as an r-process site seems compelling. Increasing levels of heavy s-process (e.g., barium) enrichment with increasing metallicity, evident in the abundances of more metal-rich halo stars and disk stars, reflect the delayed contributions from the low- and intermediate-mass (M \~ 1-3 Msol) stars that provide the site for the main s-process nucleosynthesis component during the AGB phase of their evolution. New abundance data in the mass region 60 <~ A <~ 130 is providing insight into the identity of possible alternative r-process sites. We review recent observational studies of heavy element abundances both in low metallicity halo stars and in disk stars, discuss the observed trends in light of nucleosynthesis theory, and explore some implications of these results for Galactic chemical evolution, nucleosynthesis, and nucleocosmochronology.Comment: 47 pages, 2 tables, 11 figures; To appear in PAS

    The Nature of SN 1961V

    Full text link
    The nature of SN 1961V has been uncertain. Its peculiar optical light curve and slow expansion velocity are similar to those of super-outbursts of luminous blue variables (LBVs), but its nonthermal radio spectral index and declining radio luminosity are consistent with decades-old supernovae (SNe). We have obtained Hubble Space Telescope STIS images and spectra of the stars in the vicinity of SN 1961V, and find Object 7 identified by Filippenko et al. to be the closest to the optical and radio positions of SN 1961V. Object 7 is the only point source detected in our STIS spectra and only its H-alpha emission is detected; it cannot be the SN or its remnant because of the absence of forbidden lines. While the H-alpha line profile of Object 7 is remarkably similar to that of eta Car, the blue color (similar to an A2Ib supergiant) and lack of appreciable variability are unlike known post-outburst LBVs. We have also obtained Very Long Baseline Array (VLBA) observations of SN 1961V at 18 cm. The non-detection of SN 1961V places a lower limit on the size of the radio-emitting region, 7.6 mas or 0.34 pc, which implies an average expansion velocity in excess of 4,400 km/s, much higher than the optical expansion velocity measured in 1961. We conclude the following: (1) A SN occurred in the vicinity of SN 1961V a few decades ago. (2) If the SN 1961V light maximum originates from a giant eruption of a massive star, Object 7 is the most probable candidate for the survivor, but its blue color and lack of significant variability are different from a post-outburst eta Car. (3) The radio SN and Object 7 could be physically associated with each other through a binary system. (4) Object 7 needs to be monitored to determine its nature and relationship to SN 1961V.Comment: 16 pages, 3 figures, accepted by the Astronomical Journal for the 2004 May issu
    • …
    corecore