1,456 research outputs found
A Mixed Method Study of Shifts in Patrol Tactics Attributed to Police Involvement in National Events and Movements
Over the past few years a series of high profile events involving the use of deadly force by police against individuals of minority descent have sparked national reactions driven in some part by modern media coverage. These reactions have included backlash against law enforcement both within the cities directly involved and those not directly involved. This has led to speculation by some that patrol officers are changing their tactics in a less proactive manner.
The purpose of this study is to explore the experiences, motivation, and practices of an individual department not directly involved with one of the aforementioned nationally scrutinized events. A mixed methods design, focused specifically on patrol officers, was utilized to gain insight into the perceptions and actions of the men and women of an urban patrol division. Patrol officers were surveyed using elements of an instrument utilized in a national poll in order to produce comparable data. Patrol supervisors interviewed and asked open-ended questions selected to gauge their own experiences as well as their perceptions of their subordinates’ experiences.
The study found that a majority of patrol officers report changing their tactics and a majority of patrol supervisors report not having changed their tactics in reaction to recent national events. The study revealed similarities to trends reported in national polls, although in large not to the levels of the national polls
Beyond motor neurons: expanding the clinical spectrum in Kennedy's disease
Kennedy's disease, or spinal and bulbar muscular atrophy (SBMA), is an X-linked neuromuscular condition clinically characterised by weakness, atrophy and fasciculations of the limb and bulbar muscles, as a result of lower motor neuron degeneration. The disease is caused by an abnormally expanded triplet repeat expansions in the ubiquitously expressed androgen receptor gene, through mechanisms which are not entirely elucidated. Over the years studies from both humans and animal models have highlighted the involvement of cell populations other than motor neurons in SBMA, widening the disease phenotype. The most compelling aspect of these findings is their potential for therapeutic impact: muscle, for example, which is primarily affected in the disease, has been recently shown to represent a valid alternative target for therapy to motor neurons. In this review, we discuss the emerging study of the extra-motor neuron involvement in SBMA, which, besides increasingly pointing towards a multidisciplinary approach for affected patients, deepens our understanding of the pathogenic mechanisms and holds potential for providing new therapeutic targets for this disease
Spirometric Values of Patients with Chronic Obstructive Pulmonary Disease in Dr. Hasan Sadikin General Hospital Bandung
Background: Chronic obstructive pulmonary disease (COPD) is a frequently underdiagnosed disease. Definitive COPD has been diagnosed using spirometry to evaluate pulmonary function. This study aimed to explore the spirometric values of COPD patients to aid in the diagnosis of COPD.Methods: A descriptive study was conducted in Dr. Hasan Sadikin General Hospital Bandung from October to November 2015. Data on patients diagnosed with COPD, aged 40 to 60 years old, were collected during the year 2014 prior to ethical clearance. Spirometry values consisted of forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio were taken from the medical records.Results: Sixty-eight COPD patients, consisting of 48 males and 20 females, were included of with most were classified as moderate COPD. The FEV1 was 49.72±17.79, whereas the FVC was 55.90 (range 22.80–96.03), and the FEV1/FVC ratio was 0.70±0.12. Most patients were classified into moderate COPD who had FEV1 between 50 and 80% of normal as GOLD 2 standard.Conclusions: Even though patients seem to have no symptoms, spirometric values may show a silent insufficient lung function affecting patients’ daily life
Developing a low-cost, simple-to-use electrochemical sensor for the detection of circulating tumour DNA in human fluids
It is well-known that two major issues, preventing improved outcomes from cancer are late diagnosis and the evolution of drug resistance during chemotherapy, therefore technologies that address these issues can have a transformative effect on healthcare workflows. In this work we present a simple, low-cost DNA biosensor that was developed specifically to detect mutations in a key oncogene (KRAS). The sensor employed was a screen-printed array of carbon electrodes, used to perform parallel measurements of DNA hybridisation. A DNA amplification reaction was developed with primers for mutant and wild type KRAS sequences which amplified target sequences from representative clinical samples to detectable levels in as few as twenty cycles. High levels of sensitivity were demonstrated alongside a clear exemplar of assay specificity by showing the mutant KRAS sequence was detectable against a significant background of wild type DNA following amplification and hybridisation on the sensor surface. The time to result was found to be 3.5 h with considerable potential for optimisation through assay integration. This quick and versatile biosensor has the potential to be deployed in a low-cost, point-of-care test where patients can be screened either for early diagnosis purposes or monitoring of response to therapy
Personalization of Cardiac Electrophysiology Model using the Unscented Kalman Filtering
International audienceCardiac electrophysiology mapping techniques now allow to record denser intra-operative electrograms (ECG). The patient-specific information extracted from these clinical recordings is extremely valuable. A growing field of research focuses on the personalization of electro-physiology models using this patient-specific information. The modeling in silico of a patient electrophysiology is needed to better understand the mechanism of cardiac arrhythmia. In the scope of ischemic cardiomyopa-thy, the predictive power of patient-specific simulations may also provide a substantial guidance in defining the optimal location of the implantable defibrillator, since all possible configurations could be tested in silico. This article describes an innovative personalization approach based on an unscented Kalman filter. Following an iterative process, the apparent conductivity is efficiently estimated in specific regions. A sensitivity analysis is performed to assess the filter parameters. With three patient cases, we finally demonstrate the accuracy and efficiency of our algorithm
Understanding mass fluvial erosion along a bank profile: using PEEP technology for quantifying retreat lengths and identifying event timing
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi-cohesive bank soils, namely Clear Creek, IA. Photo-Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt-sized particles at low shear stresses over sand-sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several-fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd
- …