1,725 research outputs found

    High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Get PDF
    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products

    Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury

    Get PDF
    We recently reported that the neuropathic pain medication, gabapentin (GBP; Neurontin), significantly attenuated both noxious colorectal distension (CRD)-induced autonomic dysreflexia (AD) and tail pinch-induced spasticity compared to saline-treated cohorts 2–3 weeks after complete high thoracic (T4) spinal cord injury (SCI). Here we employed long-term blood pressure telemetry to test, firstly, the efficacy of daily versus acute GBP treatment in modulating AD and tail spasticity in response to noxious stimuli at 2 and 3 weeks post-injury. Secondly, we determined whether daily GBP alters baseline cardiovascular parameters, as well as spontaneous AD events detected using a novel algorithm based on blood pressure telemetry data. At both 14 and 21 days after SCI, irrespective of daily treatment, acute GBP given 1 h prior to stimulus significantly attenuated CRD-induced AD and pinch-evoked tail spasticity; conversely, acute saline had no such effects. Moreover, daily GBP did not alter 24 h mean arterial pressure (MAP) or heart rate (HR) values compared to saline treatment, nor did it reduce the incidence of spontaneous AD events compared to saline over the three week assessment period. Power spectral density (PSD) analysis of the MAP signals demonstrated relative power losses in mid frequency ranges (0.2–0.8 Hz) for all injured animals relative to low frequency MAP power (0.02–0.08 Hz). However, there was no significant difference between groups over time post-injury; hence, GBP had no effect on the persistent loss of MAP fluctuations in the mid frequency range after injury. In summary, the mechanism(s) by which acute GBP treatment mitigate aberrant somatosensory and cardiophysiological responses to noxious stimuli after SCI remain unclear. Nevertheless, with further refinements in defining the dynamics associated with AD events, such as eliminating requisite concomitant bradycardia, the objective repeatability of automatic detection of hypertensive crises provides a potentially useful tool for assessing autonomic function pre- and post-SCI, in conjunction with experimental pharmacotherapeutics for neuropathic pain, such as GBP

    Soluble HIV-1 Env trimers in adjuvant elicit potent and diverse functional B cell responses in primates

    Get PDF
    Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoproteins (Envs) have proven difficult to elicit by immunization. Therefore, to identify effective Env neutralization targets, efforts are underway to define the specificities of bNAbs in chronically infected individuals. For a prophylactic vaccine, it is equally important to define the immunogenic properties of the heavily glycosylated Env in healthy primates devoid of confounding HIV-induced pathogenic factors. We used rhesus macaques to investigate the magnitude and kinetics of B cell responses stimulated by Env trimers in adjuvant. Robust Env-specific memory B cell responses and high titers of circulating antibodies developed after trimer inoculation. Subsequent immunizations resulted in significant expansion of Env-specific IgG-producing plasma cell populations and circulating Abs that displayed increasing avidity and neutralization capacity. The neutralizing activity elicited with the regimen used was, in most aspects, superior to that elicited by a regimen based on monomeric Env immunization in humans. Despite the potency and breadth of the trimer-elicited response, protection against heterologous rectal simian-HIV (SHIV) challenge was modest, illustrating the challenge of eliciting sufficient titers of cross-reactive protective NAbs in mucosal sites. These data provide important information for the design and evaluation of vaccines aimed at stimulating protective HIV-1 immune responses in humans

    Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data

    Get PDF
    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO₂) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) X_(CO₂) retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O₂ A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO₂ and H₂O column abundances using observations taken at 1.61 µm (weak CO₂ band) and 2.06 µm (strong CO₂ band), while neglecting atmospheric scattering. The CO₂ and H₂O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of  ≃ 20–25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be  ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1

    The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products

    Get PDF
    The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O_2) A-band at 0.765 microns and the carbon dioxide (CO_2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO_2 dry-air mole fraction, XCO_2. Variations of XCO_2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO_2. This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small (< 0.25 %) changes in the background XCO_2 field. High measurement precision is therefore essential to resolve these small variations, and high accuracy is needed because small biases in the retrieved XCO_2 distribution could be misinterpreted as evidence for CO_2 fluxes. To meet its demanding measurement requirements, each OCO-2 spectrometer channel collects 24 spectra s^(−1) across a narrow ( 17 000), dynamic range (∼ 10^4), and sensitivity (continuum signal-to-noise ratio > 400). The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community

    OCO-3 early mission operations and initial (vEarly) XCO₂ and SIF retrievals

    Get PDF
    NASA's Orbiting Carbon Observatory-3 (OCO-3) was installed on the International Space Station (ISS) on 10 May 2019. OCO-3 combines the flight spare spectrometer from the Orbiting Carbon Observatory-2 (OCO-2) mission, which has been in operation since 2014, with a new Pointing Mirror Assembly (PMA) that facilitates observations of non-nadir targets from the nadir-oriented ISS platform. The PMA is a new feature of OCO-3, which is being used to collect data in all science modes, including nadir (ND), sun-glint (GL), target (TG), and the new snapshot area mapping (SAM) mode. This work provides an initial assessment of the OCO-3 instrument and algorithm performance, highlighting results from the first 8 months of operations spanning August 2019 through March 2020. During the In-Orbit Checkout (IOC) phase, critical systems such as power and cooling were verified, after which the OCO-3 spectrometer and PMA were subjected to a series of rigorous tests. First light of the OCO-3 spectrometer was on 26 June 2019, with full science operations beginning on 6 August 2019. The OCO-3 spectrometer on-orbit performance is consistent with that seen during preflight testing. Signal to noise ratios are in the expected range needed for high quality retrievals of the column-averaged carbon dioxide (CO₂) dry-air mole fraction (XCO₂) and solar-induced chlorophyll fluorescence (SIF), which will be used to help quantify and constrain the global carbon cycle. The first public release of OCO-3 Level 2 (L2) data products, called “vEarly”, is being distributed by NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC). The intent of the vEarly product is to evaluate early mission performance, facilitate comparisons with OCO-2 products, and identify key areas to improve for the next data release. The vEarly XCO2 exhibits a root-mean-squared-error (RMSE) of ≃ 1, 1, 2 ppm versus a truth proxy for nadir-land, TG&SAM, and glint-water observations, respectively. The vEarly SIF shows a correlation with OCO-2 measurements of >0.9 for highly coincident soundings. Overall, the Level 2 SIF and XCO₂ products look very promising, with performance comparable to OCO-2. A follow-on version of the OCO-3 L2 product containing a number of refinements, e.g., instrument calibration, pointing accuracy, and retrieval algorithm tuning, is anticipated by early in 2021

    The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas

    Get PDF
    The second NASA Earth Venture Mission, Geostationary Carbon Cycle Observatory (GeoCarb), will provide measurements of atmospheric carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and solar-induced fluorescence (SIF) from Geostationary Orbit (GEO). The GeoCarb mission will deliver daily maps of column concentrations of CO2, CH4, and CO over the observed landmasses in the Americas at a spatial resolution of roughly 10 × 10 km. Persistent measurements of CO2, CH4, CO, and SIF will contribute significantly to resolving carbon emissions and illuminating biotic processes at urban to continental scales, which will allow the improvement of modeled biogeochemical processes in Earth System Models as well as monitor the response of the biosphere to disturbance. This is essential to improve understanding of the Carbon-Climate connection. In this paper, we introduce the instrument and the GeoCarb Mission, and we demonstrate the potential scientific contribution of the mission through a series of CO2 and CH4 simulation experiments. We find that GeoCarb will be able to constrain emissions at urban to continental spatial scales on weekly to annual time scales. The GeoCarb mission particularly builds upon the Orbiting Carbon Obserevatory-2 (OCO-2), which is flying in Low Earth Orbit

    NASA's Carbon Cycle OSSE Initiative - Informing Future Space-Based Observing Strategies Through Advanced Modeling and Data Assimilation

    Get PDF
    Land and ocean carbon sinks absorb half of human CO2 emissions. The fate of these sinks in a changing world is unknown, introducing large uncertainties in climate projections. Satellite measurements of atmospheric CO2 are required to better understand the processes governing carbon uptake. Careful planning of future missions using Observing System Simulation Experiments (OSSEs) can help ensure that they meet the needs of the scientific and policy communities. NASA's Carbon Cycle OSSE Initiative brings together researchers from multiple universities and NASA centers to create model-derived data products in support of informed mission planning

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore