6 research outputs found

    Material Properties and Volumetric Porosity of Biomaterials for Use in Hard Tissue Replacement

    Get PDF
    Metal implants are a type of hard tissue replacement currently used. Metals used for implants include: stainless steel, titanium, chrome, and cobalt alloys. Such implants often fail at the interface with bone. Metal implants fail when the surface of the implant is coated with an osteoconductive material. An osteoconductive material provides scaffolding for cellular migration, cellular attachment, and cellular distribution. A reason for metal implant failure could be the vastly different material properties than bone. Motivation for the research was to find a suitable bone substitute other than metal. Materials considered were: zirconia toughened alumina, carbon fiber reinforced epoxy, and glass fiber reinforced epoxy. Those materials have been used in previous biological applications and can be cast into complex configurations. Objectives of the study were to compare material properties of the composites to bone. A method to create porosity was then tested in the material that was similar to bone in critical material property. Some of the materials were statistically similar to bone in yield strength. Method to create interconnected porosity in those materials resulted in 49% void space

    Method of producing interconnected volumetric porosity in materials

    Get PDF
    A method to create interconnected porosity in materials that can be poured or injected into a cast. The process allows the arrangement of interconnected volumetric porosity to be directed in materials that are poured or injected into a cast. This process allows a manufacturer to tailor porosity with any size, shape, and configuration with the dissolvable material used to create the pores. This procedure can be applied to medical materials to direct bone growth or implant attachment. These resulting porous materials can include, but is not limited to short fiber reinforced epoxy or epoxy
    corecore