23 research outputs found

    Status of the Endangered Scotts Valley Spineflower (Polygonaceae) in Coastal Central California

    Get PDF
    Chorizanthe robusta var. hartwegii (Scotts Valley spineflower, Polygonaceae) is a narrow endemic plant restricted to a specialized microhabitat (exposed bedrock in California prairie) in Santa Cruz County, California. This taxon and the nominate variety were listed as endangered under the U.S. Endangered Species Act in 1994. Three occurrences of C. robusta hartwegii exist on four properties in a recently urbanized area at the northern edge of the city of Scotts Valley. Ten of 80 known colonies are now likely extirpated. In 2014 the primary threats are habitat alteration due to adjacent land uses and developments, and invasive plant species (non-natives) and accumulation of thatch. Using international standards, C. robusta hartwegii is critically endangered: area of occupancy, 0.39 ha; extent of occurrence, 1.3 km2; landscape, severely fragmented; and quality of the habitat, continuing to decline. With these attributes, C. robusta hartwegii faces an extremely high risk of extinction. As a matter of urgency, we recommend reducing and controlling invasive plant species and thatch using a combination of methods: mowing with biomass removal, cutting by hand tools with biomass removal, pulling by hand with biomass removal, controlled grazing, prescribed mini-burns (testing 1 m2), and spot-treating invasive grasses with a grass-specific herbicide

    Status of the Endangered Indian Knob Mountainbalm Eriodictyon altissimum (Namaceae) in Central Coastal California

    Get PDF
    Indian Knob Mountainbalm Eriodictyon altissimum (Namaceae) is a shrub endemic to western San Luis Obispo County in central coastal California, and little has been published regarding it. The species was listed as endangered under the California Endangered Species Act in 1979 and the U.S. Endangered Species Act in 1995. At Federal listing in 1995, Indian Knob mountainbalm was known from six occurrences, two of which were in protected areas, with a total population estimate of 2018, Indian Knob mountainbalm is known from seven occurrences, six of which are in protected areas and one (the largest) mostly in a protected area, with a total population count of 6,489+ individuals in 2016. Two occurrences are likely extirpated. Indian Knob mountainbalm is considered a fire-adapted chaparral plant. Reproduction is reported to be primarily vegetative by underground rhizomes, and it is specialized for substrates with physical disturbances, including: steep rocky slopes, cliff faces, fallen rock debris, sand dunes (shifting sand), roadsides, old graded substrates such as dirt/rock roads, the talus of graded substrates, and trails. We report the species grows up to 5.5 m tall and at 98 to 263 m elevation. In consideration of the life history traits used by Anacker et al. (2013) for rare plants in California, Indian Knob mountainbalm would be considered highly vulnerable to climate change. Using the international standards of IUCN, Indian Knob mountainbalm meets the criteria for classification as critically endangered including the following: geographic range, severely fragmented; extent of occurrence, 34 km2 (km2); area of occupancy, 2 (km2); and quality of habitat, continuing to decline (dense vegetation, lack of recent fire). Coordinated conservation and research are needed to further understand the species, and to restore and maintain the five extant occurrences

    Integrative taxonomy and phylogeography of Colomys and Nilopegamys (Rodentia: Murinae), semi-aquatic mice of Africa, with descriptions of two new species

    Get PDF
    The semi-aquatic African murine genera Colomys and Nilopegamys are considered monotypic and thought to be closely related to one another. Colomys occurs across forested regions of equatorial Africa, whereas Nilopegamys is known only from the Ethiopian holotype, making it among the rarest mammalian genera in the world – and possibly extinct. Using morphological and genetic data, we reassess the taxonomy of Colomys and Nilopegamys. A multilocus phylogeny with outgroups demonstrates that Nilopegamys is sister to Colomys. In addition, we recognize at least four morphologically diagnosable and genetically distinct species within Colomys: C. eisentrauti (elevated from subspecies and restricted to north-west Cameroon), C. goslingi (with a more restricted range than previously reported) and two new species (one from Liberia and Guinea and one from central and southern Democratic Republic of the Congo and Angola). We also review the status of four other taxa currently recognized within Colomys goslingi (bicolor, denti, goslingi and ruandensis) and demonstrate that these names lack phylogenetic and/or morphological support. Finally, we discuss potential biogeographic barriers that may have played a role in the evolution of Colomys and Nilopegamys, emphasizing the importance of rivers in both facilitating and, possibly, limiting dispersal within these genera.https://academic.oup.com/zoolinneanhj2022Mammal Research InstituteZoology and Entomolog

    Cranial Pathologies in a Specimen of Pachycephalosaurus

    Get PDF
    . The specimen features two large oval depressions on the dorsal surface, accompanied by numerous circular pits on the margin and inner surface of the larger depressions.In order to identify the origin of these structures, computed tomography (CT) data and morphological characteristics of the specimen are analyzed and compared with similar osteological structures in fossil and extant archosaurs caused by taphonomic processes, non-pathologic bone resorption, and traumatic infection/inflammatory origins. The results of these analyses suggest that the structures are pathologic lesions likely resulting from a traumatic injury and followed by secondary infection at the site.The presence of lesions on a frontoparietal dome, and the exclusivity of their distribution along the dorsal dome surface, offers further insight into frontoparietal dome function and supports previously hypothesized agonistic behavior in pachycephalosaurids

    Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin

    Get PDF
    Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals

    The Tropidodipsas complex of the genus Sibon (Serpentes, Colubridae)

    No full text

    Skull osteology of the slug-eating snake genera, Tropidodipsas and Sibon

    No full text

    Systematics of neotropical gastropod-eating snakes: the fasciata group of the genus Sibon

    No full text
    corecore