2,943 research outputs found
Radiative Forcing Over the Conterminous United States Due to Contemporary Land Cover Use Albedo Change
Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snowfree broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm-2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as -0.247 Wm-2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm-2 is estimated
Hubble Space Telescope Observations of NGC 6240: a Case Study of an Ultra-Luminous Infrared Galaxy with Obscured Activity
We present results from an HST study of the morphology and kinematics of NGC
6240. This merging galaxy with a double nucleus is one of the nearest and
best-studied ultraluminous infrared galaxies. HST resolves both nuclei into
seperate components. The distance between the northern and southern
optical/near-infrared components is greater than that observed in radio and
X-ray studies, arguing that even in K-band we may not be seeing all the way
through the dust to the true nuclei. The ionized gas does not display rotation
around either of the nuclei, or equilibrium motion in general. There is a
strong velocity gradient between the nuclei, similar to what is seen in CO
data. There is no such gradient in our stellar kinematics. The velocity
dispersion of the gas is larger than expected for a cold disk. We also map and
model the emission-line velocity field at an off-nuclear position where a steep
velocity gradient was previously detected in ground-based data. Overall, the
data indicate that line-of-sight projection effects, dust absorption,
non-equilibrium merger dynamics, and the possible influence of a wind may be
playing an important role in the observed kinematics. Chandra observations of
hard X-rays have shown that both of the nuclei contain an Active Galactic
Nucleus (AGN). The HST data show no clear sign of the two AGNs: neither
continuum nor narrow-band imaging shows evidence for unresolved components in
the nuclei, and there are no increased emission line widths or rapid rotation
near the nuclei. This underscores the importance of X-ray data for identifying
AGNs in highly dust-enshrouded environments.Comment: LaTeX, 32 pages, 9 figures, 2 tables, accepted for publication in The
Astronomical Journal (Jan 2004). Paper with high-resolution (non-compressed)
color figures in gzipped postscript format available at
http://www.stsci.edu/~marel/psgzdir/ngc6240v11.ps.g
Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays
J. Parsons, Euan Hendry, C. P. Burrows, Baptiste Auguié, J. Roy Sambles, and William L. Barnes, Physical Review B, Vol. 79, article 073412 (2009). Copyright © 2009 by the American Physical Society.We compare the optical response of periodic nondiffracting metallic nanoparticle and nanohole arrays. Experimental data from both structures show a pronounced minimum in their wavelength-dependent transmittance that, through numerical modeling, we identify as being due to the excitation of localized surface-plasmon resonances associated with the nanoparticles/nanoholes. Our main finding is that, while the optical response of the nanoparticle arrays is largely independent of interparticle separation, the response from nanohole arrays shows a marked dependence on interhole separation. We attribute this effect to coupling between localized surface-plasmon resonances mediated by the symmetric surface plasmon-polaritons associated with the metal film. Further numerical modeling supports this view
Spatiotemporal variability of modern precipitation δ18O in the central Andes and implications for paleoclimate and paleoaltimetry estimates
Understanding the patterns of rainfall isotopic composition in the central Andes is hindered by sparse observations. Despite limited observational data, stable isotope tracers have been commonly used to constrain modern‐to‐ancient Andean atmospheric processes, as well as to reconstruct paleoclimate and paleoaltimetry histories. Here, we present isotopic compositions of precipitation (δ18Op and δDp) from 11 micrometeorological stations located throughout the Bolivian Altiplano and along its eastern flank at ~21.5°S. We collected and isotopically analyzed 293 monthly bulk precipitation samples (August 2008 to April 2013). δ18Op values ranged from −28.0‰ to 9.6‰, with prominent seasonal cycles expressed at all stations. We observed a strong relationship between the δ18Op and elevation, though it varies widely in time and space. Constraints on air sourcing estimated from atmospheric back trajectory calculations indicate that continental‐scale climate dynamics control the interannual variability in δ18Op, with upwind precipitation anomalies having the largest effect. The impact of precipitation anomalies in distant air source regions to the central Andes is in turn modulated by the Bolivian High. The importance of the Bolivian High is most clearly observed on the southern Bolivian Altiplano. However, monthly variability among Altiplano stations can exceed 10‰ in δ18Op on the plateau and cannot be explained by elevation or source variability, indicating a nontrivial role for local scale effects on short timescales. The strong influence of atmospheric circulation on central Andean δ18Op requires that paleoclimate and paleoaltimetry studies consider the role of South American atmospheric paleocirculation in their interpretation of stable isotopic values as proxies.Key PointsFive‐year record of central Andes precipitation isotopic compositionPrecipitation isotopes are elevation dependent, but vary in space and timePrecipitation isotope variability is related to large‐scale climate dynamicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111974/1/jgrd52161.pd
Functional differences in the microbial processing of recent assimilates under two contrasting perennial bioenergy plantations
Land use change driven alteration of microbial communities can have implications on belowground C cycling and storage, although our understanding of the interactions between plant C inputs and soil microbes is limited. Using phospholipid fatty acids (PLFA's) we profiled the microbial communities under two contrasting UK perennial bioenergy crops, Short Rotation Coppice (SRC) willow and Miscanthus Giganteus (miscanthus), and used 13C – pulse labelling to investigate how recent carbon (C) assimilates were transferred through plant tissues to soil microbes. Total PLFA's and fungal to bacterial (F:B) ratios were higher under SRC willow (Total PLFA = 47.70 ± 1.66 SE μg PLFA g−1 dry weight soil, F:B = 0.27 ± 0.01 SE) relative to miscanthus (Total PLFA = 30.89 ± 0.73 SE μg PLFA g−1 dry weight soil, F:B = 0.17 ± 0.00 SE). Functional differences in microbial communities were highlighted by contrasting processing of labelled C. SRC willow allocated 44% of total 13C detected into fungal PLFA relative to 9% under miscanthus and 380% more 13C was returned to the atmosphere in soil respiration from SRC willow soil compared to miscanthus. Our findings elucidate the roles that bacteria and fungi play in the turnover of recent plant derived C under these two perennial bioenergy crops, and provide important evidence on the impacts of land use change to bioenergy on microbial community composition
Prayer and psychological health: a study among sixth-form pupils attending Catholic and Protestant schools in Northern Ireland
Eysenck's dimensional model of personality includes two indicators of psychological health, defined as neuroticism and psychoticism. In order to examine the association between psychological health and prayer, two samples of sixth-form pupils in Northern Ireland (16- to 18-year-olds) attending Catholic (N = 1246) and Protestant (N = 1060) schools completed the abbreviated Revised Eysenck Personality Questionnaire alongside a simple measure of prayer frequency. The data demonstrated a positive association between prayer frequency and better levels of psychological health as assessed by Eysenck's notion of psychoticism. Among pupils attending both Catholic and Protestant schools, higher levels of prayer were associated with lower psychoticism scores. Among pupils attending Catholic schools, however, higher levels of prayer were also associated with higher neuroticism scores
- …