8,041 research outputs found
Quantum switching networks for perfect qubit routing
We develop the work of Christandl et al. [M. Christandl, N. Datta, T. C.
Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev. A 71, 032312 (2005)],
to show how a d-hypercube homogenous network can be dressed by additional links
to perfectly route quantum information between any given input and output nodes
in a duration which is independent of the routing chosen and, surprisingly,
size of the network
Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells
The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil Mull receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB
The structure of a tetrameric α-carbonic anhydrase fromThermovibrio ammonificansreveals a core formed around intermolecular disulfides that contribute to its thermostability
Carbonic anhydrase enzymes catalyse the reversible hydration of carbon dioxide to bicarbonate. A thermophilic Thermovibrio ammonificans α-carbonic anhydrase (TaCA) has been expressed in Escherichia coli and structurally and biochemically characterized. The crystal structure of TaCA has been determined in its native form and in two complexes with bound inhibitors. The tetrameric enzyme is stabilized by a unique core in the centre of the molecule formed by two intersubunit disulfides and a single lysine residue from each monomer that is involved in intersubunit ionic interactions. The structure of this core protects the intersubunit disulfides from reduction, whereas the conserved intrasubunit disulfides are not formed in the reducing environment of the E. coli host cytosol. When oxidized to mimic the environment of the periplasmic space, TaCA has increased thermostability, retaining 90% activity after incubation at 70°C for 1 h, making it a good candidate for industrial carbon-dioxide capture. The reduction of all TaCA cysteines resulted in dissociation of the tetrameric molecule into monomers with lower activity and reduced thermostability. Unlike other characterized α-carbonic anhydrases, TaCA does not display esterase activity towards p-nitrophenyl acetate, which appears to result from the increased rigidity of its protein scaffold
Blunt Body Aerodynamics for Hypersonic Low Density Flows
Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations
High-Resolution Mid-Infrared Morphology of Cygnus A
We present subarcsecond resolution mid-infrared images at 10.8 and 18.2
microns of Cygnus A. These images were obtained with the University of Florida
mid-IR camera/spectrometer OSCIR at the Keck II 10-m telescope. Our data show
extended mid-IR emission primarily to the east of the nucleus with a possible
western extension detected after image deconvolution. This extended emission is
closely aligned with the bi-conical structure observed at optical and near-IR
wavelengths by the HST. This emission is consistent with dust heated from the
central engine of Cygnus A. We also marginally detect large-scale low level
emission extending > 1.5 kpc from the nucleus which may be caused by in-situ
star formation, line emission, and/or PAH contamination within the bandpass of
our wide N-band filter.Comment: 20 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Working Papers: Astronomy and Astrophysics Panel Reports
The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities
Subaru Spectroscopy and Spectral Modeling of Cygnus A
We present high angular resolution (0.5) MIR spectra
of the powerful radio galaxy, Cygnus A, obtained with the Subaru telescope. The
overall shape of the spectra agree with previous high angular resolution MIR
observations, as well as previous Spitzer spectra. Our spectra, both on and off
nucleus, show a deep silicate absorption feature. The absorption feature can be
modeled with a blackbody obscured by cold dust or a clumpy torus. The deep
silicate feature is best fit by a simple model of a screened blackbody,
suggesting foreground absorption plays a significant, if not dominant role, in
shaping the spectrum of Cygnus A. This foreground absorption prevents a clear
view of the central engine and surrounding torus, making it difficult to
quantify the extent the torus attributes to the obscuration of the central
engine, but does not eliminate the need for a torus in Cygnus A
Universally Sloppy Parameter Sensitivities in Systems Biology
Quantitative computational models play an increasingly important role in
modern biology. Such models typically involve many free parameters, and
assigning their values is often a substantial obstacle to model development.
Directly measuring \emph{in vivo} biochemical parameters is difficult, and
collectively fitting them to other data often yields large parameter
uncertainties. Nevertheless, in earlier work we showed in a
growth-factor-signaling model that collective fitting could yield
well-constrained predictions, even when it left individual parameters very
poorly constrained. We also showed that the model had a `sloppy' spectrum of
parameter sensitivities, with eigenvalues roughly evenly distributed over many
decades. Here we use a collection of models from the literature to test whether
such sloppy spectra are common in systems biology. Strikingly, we find that
every model we examine has a sloppy spectrum of sensitivities. We also test
several consequences of this sloppiness for building predictive models. In
particular, sloppiness suggests that collective fits to even large amounts of
ideal time-series data will often leave many parameters poorly constrained.
Tests over our model collection are consistent with this suggestion. This
difficulty with collective fits may seem to argue for direct parameter
measurements, but sloppiness also implies that such measurements must be
formidably precise and complete to usefully constrain many model predictions.
We confirm this implication in our signaling model. Our results suggest that
sloppy sensitivity spectra are universal in systems biology models. The
prevalence of sloppiness highlights the power of collective fits and suggests
that modelers should focus on predictions rather than on parameters.Comment: Submitted to PLoS Computational Biology. Supplementary Information
available in "Other Formats" bundle. Discussion slightly revised to add
historical contex
- …