7 research outputs found

    Pulmonary inflammatory effects of source-oriented particulate matter from California's San Joaquin Valley.

    No full text
    The EPA regulates ambient particulate matter (PM) because substantial associations have been established between PM and health impacts. Presently, regulatory compliance involves broad control of PM emission sources based on mass concentration rather than chemical composition, although PM toxicity is likely to vary depending upon PM physicochemical properties. The overall objective of this study was to help inform source-specific PM emission control regulations. For the first time, source-oriented PM was collected from the atmosphere in Fresno, CA, onto 38 source/size substrates. Mice were exposed via oropharyngeal aspiration to equivalent mass doses [50 μg] of two size fractions: ultrafine (Dp < 0.17μm) and submicron fine (0.17 < Dp < 1 μm) during summer and winter seasons. At 24 hours post-exposure, cellular and biochemical indicators of pulmonary inflammation were evaluated in the bronchoalveolar lavage fluid. Significant inflammatory responses were elicited by vehicle, regional background, and cooking PM sources that were dependent on season and particle size. This is the first study of source-oriented toxicity of atmospheric PM and supports source-specific emissions control strategies

    Pulmonary inflammatory effects of source-oriented particulate matter from California's San Joaquin Valley

    No full text
    The EPA regulates ambient particulate matter (PM) because substantial associations have been established between PM and health impacts. Presently, regulatory compliance involves broad control of PM emission sources based on mass concentration rather than chemical composition, although PM toxicity is likely to vary depending upon PM physicochemical properties. The overall objective of this study was to help inform source-specific PM emission control regulations. For the first time, source-oriented PM was collected from the atmosphere in Fresno, CA, onto 38 source/size substrates. Mice were exposed via oropharyngeal aspiration to equivalent mass doses [50 μg] of two size fractions: ultrafine (Dp < 0.17μm) and submicron fine (0.17 < Dp < 1 μm) during summer and winter seasons. At 24 hours post-exposure, cellular and biochemical indicators of pulmonary inflammation were evaluated in the bronchoalveolar lavage fluid. Significant inflammatory responses were elicited by vehicle, regional background, and cooking PM sources that were dependent on season and particle size. This is the first study of source-oriented toxicity of atmospheric PM and supports source-specific emissions control strategies

    Nanoparticles, Lung Injury, and the Role of Oxidant Stress

    No full text
    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion
    corecore